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Abstract

The determinants of firm-level productivity are often latent. The prevalence of

these latent firm-level productivity determinants can lead to the mismeasurement

of productivity differences between firm groups and their respective contribution

to aggregate productivity growth. We propose a flexible extension of commonly

employed production function estimation techniques using finite mixture models to

control for latent factors. Monte Carlo evidence and estimates from Belgian and

Chilean firm-level data demonstrate that controlling for such factors is crucial to

obtaining accurate estimates of productivity differences between firm groups. Our

approach delivers estimates of such productivity differences that are robust to the

(un)availability of productivity determinants in the data.
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1 Introduction

Significant variation in firm-level productivity exists across different clusters of firms. The

literature has pointed out several observable firm-level characteristics associated to these

differences, including innovation (Aw et al., 2011; Doraszelski and Jaumandreu, 2013;

Bilir and Morales, 2020), trade (Amiti and Konings, 2007; Kasahara and Rodrigue, 2008;

De Loecker, 2013; Kasahara and Lapham, 2013; Merlevede and Theodorakopoulos, 2021),

engagement in FDI (Javorcik, 2004; Blalock and Gertler, 2008), management practices

(Bloom and Van Reenen, 2011; Caliendo et al., 2020; Rubens, 2020), technology (Harrigan

et al., 2018), intangible transfers (Merlevede and Theodorakopoulos, 2020), human capital

(Van Beveren and Vanormelingen, 2014; Konings and Vanormelingen, 2015) and industry

linkages (Luttmer, 2007).

However, many characteristics affecting productivity remain latent and, thus, unobserved

by researchers. Consequently, productivity differences between groups of firms can be

misidentified when the underlying heterogeneity in the productivity growth process is left

unexplained (De Loecker, 2013). This condition that all productivity determinants have

to be accounted for imposes practically infeasible data requirements on a productivity

estimation procedure. In particular, even if most heavy data requirements are met, some

firm-level characteristics are expected to remain intrinsic and difficult to measure, e.g.

managerial capacity and intangible capital (Haskel and Westlake, 2017).1

To illustrate the relevance of this observation, in Figure 1 we plot how the overall pro-

ductivity density varies among firm clusters that are determined by firm-level character-

istics available in the data, i.e. export and FDI status, for manufacturing firms both in

Belgium in 2015 (left panel) and Chile in 1988 (right panel).2 We find significant hetero-

geneity apparent in both the productivity average level and variance. Notably, Belgian

firms engaged in FDI exhibit a distinct productivity growth path linked to a more dis-

persed and right-shifted productivity distribution compared to firms not involved in FDI.

Although a similar pattern might be anticipated for Chilean firms, the data at hand lacks

the necessary information to control for FDI status when estimating productivity. This

logic can be, in turn, extended to all other latent productivity determinants not captured

in the data.

This paper introduces a novel approach to estimating productivity that incorporates

the influence of latent, time-invariant firm-level determinants on productivity growth

1From a technical point of view, considering a large set of relevant and possibly highly collinear ex-
planatory variables raises the need for sufficient variation in the data to circumvent potential collinearity
issues and obtain precise point estimates. This seems infeasible in practice, especially for small segments
or sectors of the economy with a limited number of observations available by default.

2To estimate productivity, we follow De Loecker (2013) and directly incorporate firm-level charac-
teristics into the productivity Markov process when estimating the production function, as detailed in
Appendix F.
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Figure 1: Productivity density by firm characteristics for the manufacturing sector in
Belgium in 2015 (left panel) and Chile in 1988 (right panel)
Note: Productivity estimates are normalized to mean zero and obtained from a value-added Translog production function

(Ackerberg et al., 2007) with the firm-level characteristics included in the Markov process. See sections 3 and 4 for an

in-depth discussion of the productivity estimation methodology and underlying data.

heterogeneity. We build on the observation of Dewitte et al. (2022) that, in standard

production function estimation methodologies, productivity for all firms is assumed to

follow a homogeneous random growth process (Olley and Pakes, 1996; Levinsohn and

Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020). Therefore, if heterogeneity from

firm-level characteristics is present but not controlled for, the level, dynamics, or drivers of

productivity may be misidentified. To overcome these challenges, we propose an extension

of current productivity estimation methodologies using finite mixture models (FMMs).

A FMM is a probabilistic model that allows the productivity evolution to differ across

clusters of firms, in line with the descriptive evidence presented in Figure 1, even when the

underlying drivers of these differences remain unobserved by researchers. By employing

FMMs, we capture the heterogeneity and account for the latent factors that influence

productivity growth, thus enhancing the accuracy of productivity estimation.

The proposed methodology builds on the behavioral framework set out by Olley and

Pakes (1996) and adapted by Levinsohn and Petrin (2003); Doraszelski and Jaumandreu

(2013); Ackerberg et al. (2015), and Gandhi et al. (2020), among others. Specifically,

as commonly modeled in the literature, a firm’s production output is seen as a function

of factor inputs and an additive Hicks-neutral productivity term. Instead of specifying

productivity as the outcome of a growth process common to all firms, we allow it to

evolve differently between clusters. We model the probability of cluster affiliation per

firm without requiring additional information on the clusters’ drivers besides—standard

in this literature—information on firm-level output and input factors. We then extend the

nonparametric identification arguments for the production function parameters (Gandhi

et al., 2020; Ackerberg et al., 2022) to the cluster-specific parameters of the productivity
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growth process and the cluster affiliation probabilities by applying nonparametric iden-

tification results for finite mixtures of Markov processes (Kasahara and Shimotsu, 2009;

Hu and Shum, 2012; Higgins and Jochmans, 2023a,b). Thus, by factoring latent het-

erogeneity into productivity, we can obtain “unbiased” estimates of productivity while

reducing data requirements.3

We demonstrate the validity of the proposed methodology with a Monte Carlo analysis

and, in turn, use detailed Belgian and Chilean firm-level data to showcase its empirical

applicability. First, we extend the Monte Carlo experiment by Ackerberg et al. (2015)

to account for latent heterogeneity in productivity. We highlight the benefits of the pro-

posed method relative to current estimators when firm-level drivers of heterogeneity are

unobserved in the data or affected by measurement error. Unlike aggregate productiv-

ity growth estimates, productivity differences between groups of firms, such as export

premia, are biased when latent heterogeneity is not controlled for. Second, we show that

the proposed estimator provides economically sensible estimates when brought to the

data.4 We apply our estimator to a set of Belgian manufacturing industries. We rely on

data on firm-level revenue and input use from balance sheets and value-added tax (VAT)

returns over the period 2008-2018, combined with a rich set of firm-level characteristics

considered in the literature to be relevant for productivity growth, such as age, industry

affiliation and participation in export, import, and foreign direct investment (FDI) activ-

ities. We find strong evidence of heterogeneity in the productivity growth process. We

also observe multiple clusters of firms that differ in terms of this growth process, as re-

flected by differences in the level of productivity, the magnitude of unexpected shocks to

productivity, and the persistence of these shocks over time.

The results suggest that cluster affiliation is positively associated with a firm’s initial

conditions, such as its initial productivity and factor input use. Any additional firm-level

characteristics considered, such as age, export, import, or FDI status, can be associ-

ated with clusters but do not have strong explanatory power beyond the firm’s initial

conditions. This finding underlines the strength of the proposed estimation approach,

whereby an unbiased identification of productivity does not necessarily require inform-

ation on firm-level characteristics beyond output and input use. This aspect of the

3By unbiased estimates, we mean estimates that focus on resolving the identification of productivity
in the presence of latent heterogeneity, without taking a stance on other forms of biases that may arise
when estimating productivity. See Tybout (1992); Van Beveren (2012); De Loecker and Goldberg (2014)
and De Loecker and Syverson (2021) for an overview. As such, the proposed estimation approach can be
extended to incorporate existing solutions proposed in the literature to account for additional sources of
bias that are likely to arise when estimating production functions.

4Notwithstanding its semi-parametric nature and the additional set of cluster-specific parameters, the
empirical implementation of our estimation procedure remains computationally fast. This is attributable
to the linear-in-parameters estimation problem for all cluster-specific sets of parameters. All relevant
estimation code has been compiled in an easy-to-use R package, which will be made publicly available
upon publication.
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proposed estimator is key in settings with limited data availability and in the study of

complex economic environments where it is inherently difficult to single out key drivers

of productivity growth.

To empirically demonstrate how the proposed estimator complements other commonly

used methodologies that rely on information about firm-level characteristics, we focus on

evaluating productivity differences between groups of firms.5 To that end, we revisit a

topic that has attracted the attention of multiple researchers and policymakers over the

past years. Specifically, we examine the relative productivity advantage of exporting over

non-exporting firms (the export premium), the evolution of this premium over time, and

its contribution to aggregate productivity growth (see, for instance, Bernard and Bradford

Jensen, 1999; Baldwin and Gu, 2003; Bernard et al., 2007; De Loecker, 2013; Garcia-

Marin and Voigtländer, 2019; Gandhi et al., 2020). We demonstrate that export premia

obtained from alternative productivity estimation methodologies can vary depending on

the availability to the researcher of additional information on firm-level characteristics,

such as age, import, or FDI status. In contrast, the proposed estimation approach delivers

robust estimates of export premia and the contribution of exporting firms to aggregate

productivity growth, regardless of the availability of additional information on firm-level

characteristics in the dataset. A robustness check with Chilean firm-level data (Gandhi

et al., 2020) reaffirms our baseline results based on Belgian data.

We are not the first to propose a generalization of the Markov process specification to

account for latent heterogeneity. Originally, Olley and Pakes (1996) envisioned a non-

parametric specification of the productivity growth process but found it to be computa-

tionally infeasible in practice (Olley and Pakes, 1996, footnote 23, p.1279). Dewitte et al.

(2020) approximate productivity as a firm-specific fixed effect and a time trend, which

can interact with each other in a non-parametric fashion, merely requiring a certain

smoothness of productivity over time. However, if the smoothness requirement differs

between unobserved groups of firms, this method could yield biased estimates (Li et al.,

2016). Furthermore, Lee et al. (2019); Gandhi et al. (2020) and Ackerberg (2021) discuss

the feasibility of allowing for firm-fixed effects in recent production function estimation

techniques. As Gandhi et al. (2020) note, firm-fixed effects often lead to estimates of

the capital coefficient that are unrealistically low and result in large standard errors.

This is in line with Blundell and Bond (1998) who show that first-differenced production

functions in a dynamic panel setup with a short time dimension perform poorly due to

5Productivity estimates are often used to evaluate productivity differences between groups of firms
through a regression framework (Garcia-Marin and Voigtländer, 2019; Gandhi et al., 2020; Caliendo
et al., 2020), or to evaluate the differential contribution of these groups to aggregate productivity growth
through a decomposition framework (Collard-Wexler and De Loecker, 2015; Brandt et al., 2017).
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weak instruments.6 The methodology proposed in this paper generalizes the productivity

growth trend using FMMs, allowing for cluster-specific parameters (such as the constant)

that account for unobserved heterogeneity while maintaining sufficient information to

identify the production function parameters.

The advantages of FMMs have already been explored in the stochastic frontier liter-

ature (see, e.g., Beard et al., 1997; Orea and Kumbhakar, 2004; El-Gamal and Inano-

glu, 2005; Greene, 2005) and in the structural production function literature to consider

technology-specific production function specifications (Van Biesebroeck, 2003; Kasahara

et al., 2017, 2023; Battisti et al., 2020). This paper shifts the focus to generalizing

current productivity-estimation techniques, allowing for latent heterogeneity in the evol-

ution of productivity. We generalize the estimation strategies for both value-added and

gross-output production functions. To control for simultaneity problems, we build on

the stochastic frontier literature (for an overview, see Amsler et al., 2016) to specify a

(Limited Information) Maximum Likelihood ((LI)ML) model which does not require any

additional assumptions regarding the first-order conditions of factor inputs beyond what

is standard in the literature (Ackerberg et al., 2015; Gandhi et al., 2020). Moreover, we

model the probability of belonging to a specific cluster. Such a mixture-of-experts spe-

cification (Gormley and Frühwirth-Schnatter, 2019) improves cluster identification and

allows ex-post inference to be drawn for each cluster, for instance, by evaluating the

correlation between identified clusters and firm-level characteristics. Compared to the

stochastic frontier literature, the structural production function estimation techniques

impose less stringent functional form restrictions (Sickles and Zelenyuk, 2019).

This paper is structured as follows. Section 2 introduces the model and establishes non-

parametric identification for this model. We present and test our estimation framework

by means of a Monte Carlo analysis in Section 3. We subsequently apply the methodology

to firm-level data in Section 4, before discussing the robustness of the results in Section 5.

We end with a summary of the main contributions and opportunities for future research

in Section 6.

2 The model

In this section, we specify the assumptions underlying the production function estimation

procedure following Gandhi et al. (2020) and Ackerberg et al. (2022). We then discuss

the nonparametric identification of the production function provided by Gandhi et al.

(2020) and Ackerberg et al. (2022) before extending their nonparametric identification

6To reduce such biases, one could further augment the estimation procedures borrowing from the ‘sys-
tem GMM’ estimator developed by Blundell and Bond (1998) and outlined by Arellano and Bover (1995).
For an application using the Gandhi et al. (2020) methodology, see Merlevede and Theodorakopoulos
(2021).
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strategy to our proposed generalization of the productivity process.

The data we observe consists of a (short) panel of firms b = 1, . . . , B over the period

t = 0, . . . , T , sampled from an underlying population. In each period t, firms have access

to the information set Ibt when making their operating decisions. A generic firm’s output,

capital, labor, and intermediate inputs are denoted by (Ybt, Kbt, Lbt,Mbt). This data allows

the researcher to observe the joint distribution of {Ybt, Kbt, Lbt,Mbt}Tt=0. Furthermore,

each firm belongs to a certain cluster.

Assumption 1 - Cluster affiliation: Each firm b belongs to a certain time-invariant

cluster, indicated by zb ∈ {1, . . . , S}.7 Cluster affiliation is dependent on the first-period

information set, i.e., Prz (zb = s|Ib0) where s = 1, . . . , S, and is known to the firm from

that period onwards, zb ∈ Ibt for t > 0. The total number of clusters S is exogenously

determined.8

Specifying firm cluster membership as a function of the initial information set ensures

that each firm does not have the same prior probability of following a particular cluster-

specific productivity dynamic regardless of the firms’ observable characteristics at entry.

As will be demonstrated below, it also allows dealing with the initial conditions problem

(Wooldridge, 2005; Frühwirth-Schnatter et al., 2012). Conditional cluster affiliation can,

but does not have to, be economically motivated as the firm’s optimal decision rule for

cluster affiliation. This rule can follow from a net present value comparison between

clusters and choosing the cluster that will result in the highest discounted profits, taking

expectations and the costs of cluster affiliation into account.

2.1 The production function and cluster-specific productivity

The relation between output and inputs will be summarized by either a gross output pro-

duction function (Gandhi et al., 2020), or a value-added production function (Ackerberg

et al., 2015).

7Note that even though FMMs allow for time-invariant clusters, we limit the proposed approach to
latent heterogeneity originating from time-invariant firm-level determinants in the productivity process
to keep the resulting estimation method computationally fast and practical. This idea of fixed cluster
membership over time is a stringent assumption, but not at odds with the Belgian firm-level data we
use for our empirical application in the next section. Over ten years, 100% of the Belgian firms do not
change their location, 91.9% do not change their industry affiliation, 81.8% do not change their export
status, 72.6% do not change their import status, and 98.1% do not change their FDI status. Moreover,
imminent changes to firm characteristics and resulting status can be expected to be related to their
initial conditions and result in appropriately differentiated clusters.

8We use a general approach where the number of clusters is freely determined from the data.
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Assumption 2a - Gross output production function: The relationship between

output and inputs takes the form:

Ybt = fKLM (Kbt, Lbt,Mbt) e
ωbt+εbt ⇔

ybt = fklm (kbt, lbt,mbt) + ωbt + εbt, (1)

where lowercase variables indicate logarithmic values of uppercase variables. fklm(·) rep-
resents the gross output production function explaining the variability in firm-level out-

put, along with two additive terms.9 The production function fklm is differentiable at all

(k, l,m) ∈ R3
++ and strictly concave in m.

Assumption 2b - Value added production function: The relationship between

output and inputs takes the form (Gandhi et al., 2017; Ackerberg et al., 2015):

Ybt −Mbt = fKL (Kbt, Lbt) e
ωbt+εbt , ⇔

ybt
mbt

= fkl (kbt, lbt) + ωbt + εbt, (2)

where fkl(·) represents the value-added production function explaining the variability in

firm-level output, along with two additive terms. The production function fkl is differ-

entiable at all (k, l) ∈ R2
++.

The two additive terms in equations (1) and (2) represent transitory and persistent shocks

to measured production. The transitory component, εbt, represents an ex-post shock to

production and possible classical measurement error that does not affect future output.

The persistent component, ωbt, represents Hicks-neutral total factor productivity (TFP)

that is known to the firm before making its period t decisions. Concretely, ωbt “might

represent variables such as the managerial ability of a firm, expected downtime due to

machine breakdown, expected defect rates in a manufacturing process, soil quality, or the

expected rainfall at a particular farm’s location”, while εbt “might represent deviations

from expected breakdown, defect, or rainfall amounts in a given year” (Ackerberg et al.,

2015, p.2414). We formalize this interpretation as follows.

Assumption 3 - Shocks to production: εbt /∈ Ibt is not known to the firm at the

time of making its period t decisions and is independent of the within-period variation

in information sets, so that its distribution can be written as pε (εbt | Ibt) = pε (εbt).
10

9Throughout this paper, we differentiate between functional forms f(·) by indexing them with the
input factors of interest x, i.e., fx(·). Cluster-specific functional forms are indexed by the cluster-
affiliation superscript s, i.e., fs

x(·).
10Throughout this paper, we differentiate between discrete (Pr(·)) and continuous (p(·)) probability

density functions (PDF) by indexing them with variable(s) of interest x, i.e., Prx(x), px(x). PDF’s
conditional on cluster affiliation are indexed by the cluster-affiliation indicator s, i.e., psx(x) = px(x|zb =
s).
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ωbt ∈ Ibt, on the other hand, is known to the firm at the time of making its period t

decisions. Furthermore, ωjt follows a cluster-specific first-order Markov process:

pω(ωbt|Ibt−1) = pω (ωbt|ωbt−1, zb) . (3)

This specification of the stochastic behavior of productivity generalizes commonly used

specifications in the literature where either a single cluster is imposed, i.e. S = 1, or where

a controlled Markov process is specified conditional on a vector of observed productivity

determinants (ebt), i.e. pω(ωbt|Ibt−1) = pω(ωbt|ωbt−1, ebt). In contrast, firm-level cluster

affiliation, zb, does not have to be observed by the econometrian a priori.

In combination with Assumption 1, Assumption 3 implies that we can decompose ωbt into

its cluster-specific conditional expectation and a cluster-specific innovation term11

ωbt =
S∑

s=1

Prz(zb = s|Ib0) (E [ωbt|ωbt−1, zb = s] + ηsbt)

=
S∑

s=1

Prz(zb = s|Ib0) (g
s(ωbt−1) + ηsbt) . (4)

where, by construction, Eη

[∑S
s=1 Prz(zb = s|Ib0)η

s
bt|Ibt−1

]
= 0 for t ≥ 1.

The inputs, then, are decided upon according to the following rules.

Assumption 4 - Timing of input choices: Firms decide on period t capital in

period t − 1, such that capital is predetermined, i.e., kbt ∈ Ibt. Labor is determined

either in period t, period t − 1, or period t − i with 0 < i < 1. Both capital and labor

input choices are dynamic such that pk,l(kbt, lbt|ωbt−1, kbt−1, lbt−1) is dynamically complete.

Materials are a fully flexible input, decided upon in period t based on the information

set Ibt, and are not affected by lagged values of materials.

2.2 The firm’s problem

Assumption 5 - Market structure and profit maximization: Firms are price

takers in the output and intermediate input markets, with PM
t denoting the common

intermediate-input price and P Y
t denoting the common output price facing all firms in

11The proposed FMM specification contains a random coefficients specification and a multidimensional
Hicks-neutral productivity specification as limiting cases. First, for S — the total number of clusters
— going to B — the total number of firms — the FMM approach grows towards a random coefficients
specification that allows for differences in the variance of the error term. Second, suppose productivity is a
multidimensional sum of many independent random variables. In that case, (cluster-specific) productivity
will be normally distributed as a result of the application of the Central Limit Theorem.
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period t.12 Firms maximize expected discounted profits.

Assumption 6 - First order condition of the flexible input: Under assumptions

2a, 4, and 5, the firm’s profit-maximization problem with respect to intermediate inputs

is

max
Mbt

P Y
t Eε

[
Fklm (Kbt, Lbt,Mbt) e

ωbt+εbt | Ibt

]
− PM

t Mbt, (5)

as Mbt does not have any dynamic implications and thus affects only current-period

profits. The first-order condition of the problem is

P Y
t

∂

∂Mbt

Fklm (Kbt, Lbt,Mbt) e
ωbtEε [e

εbt ] = PM
t . (6)

This equation can then be used to solve for the demand for intermediate inputs. The same

logic applies in the value-added production function case under assumption 2b.

Assumption 7 - Flexible input demand: Under assumptions 4, 5, and respectively

2a (Gandhi et al., 2020) or 2b (Ackerberg et al., 2015), the firm’s profit-maximization

problem with respect to intermediate inputs motivates the definition of intermediate input

demand as a function Mt (·) of a single or, otherwise stated, scalar unobservable ωbt which

is strictly monotone in this unobservable ωbt, and thus invertible:

mbt = Mt (kbt, lbt, ωbt) ⇔ ωbt = M−1
t (kbt, lbt,mbt) , (7)

It should be noted that neither Assumption 6 nor Assumption 7 is affected by the gener-

alization of the Markov process for productivity proposed in equations (3) and (4). This

is because, under the stated assumptions, a flexible production factor will be unaffected

by differences in the expectations of future productivity shocks between clusters of firms

(Ackerberg, 2021).13

2.3 Nonparametric identification

Identification of the production functions specified in equations (1) and (2) is burdened by

a simultaneity problem. Specifically, firm-level input choices depend on and thus correl-

ate with the unobserved productivity term, i.e., E [ωbt|kbt, lbt,mbt] ̸= 0. This dependence

12For the sake of simplicity, we limit the behavioral framework to the case of perfect competition.
However, the proposed identification procedure solely affects the assumption about the Markov process
of productivity and can, therefore, naturally be extended to settings that allow for imperfectly compet-
itive output and input markets, as in Klette and Griliches (1996); De Loecker (2011); Doraszelski and
Jaumandreu (2013); De Loecker et al. (2016); Rubens (2021), and Blum et al. (2021).

13See Online Appendix F for a discussion of the adequacy of this assumption.
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renders Ordinary Least Squares (OLS) or Nonlinear Least Squares (NLS) estimates of pro-

duction function parameters inconsistent. Therefore, alternative identification strategies

have been developed, usually consisting of two stages.

In the first stage, the ex-post production term (εbt) and the contribution of the flex-

ible input factors are separated from output in the main estimating equation (1) or

(2). Different methods exist to do so. For instance, Ackerberg et al. (2015) rely on the

value-added production function (Assumption 2b) and the proportionality of the flexible

production factor mbt to value added (Assumptions 7). These assumptions allow the use

of the flexible production factor, along with other variables, as a control for unobserved

productivity to identify the ex-post shock to production and classical measurement error

term εbt. On the other hand, Gandhi et al. (2020) build on the first-order conditions of

the flexible production factor mbt (Assumption 6) to jointly identify the ex-post shock

to production term and the output elasticity of the flexible input from a gross output

production function (Assumption 2a).14 Both first-stage estimation procedures are con-

sistent with the proposed generalization of the Markov process in this paper. As indicated

below in subsection 3.2, both procedures rely on a flexible production factor unaffected

by differences in the expectations of future productivity shocks between groups of firms

(Ackerberg, 2021).

Regardless of the production function estimation methodology used, the first stage results

in an equation of this form:

ϕbt = hkl (kbt, lbt) + ωbt, (8)

where ϕbt represents the remaining output variation after netting out the estimates of the

first stage ex-post shocks to production and, for the case of a gross-output production

function, the output contribution of the flexible production factor. Up to this point, the

steps taken are standard in the literature.

The second stage allows the identification of output elasticities of non-flexible inputs. It

relies on the assumed Markov process of productivity (Assumption 4 and equation (4))

to replace the unobserved productivity term ωbt from the above-specified equation (8)

as a function of observables and production function parameters. The novel part of our

methodology is that we generalize the productivity evolution process to explicitly depend

on the fixed cluster affiliation of a firm through the cluster affiliation indicator zb:

ϕbt = hkl (kbt, lbt) +
S∑

s=1

Prz(zb = s|Ib0) [g
s (ϕbt−1 − hkl (kbt−1, lbt−1)) + ηsbt] . (9)

The question now is whether these proposed identification strategies allow for the pro-

14See Online Appendix C for a detailed description of the first stage of both methodologies.
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duction function and, consequently, the productivity distribution to be identified nonpara-

metrically based on the observed joint distribution of {ybt, kbt, lbt,mbt}Tt=0, or {ϕbt, kbt, lbt}Tt=0

from the second stage onwards. If S = 1, under Assumptions 1–7 (respectively Assump-

tion 2a and 2b) with the additional restriction on Assumption 4 that labor is predeter-

mined (lbt ∈ Ibt), and an additional support condition on (ϕbt, kbt, lbt), Gandhi et al. (2020)

demonstrate that the gross output production function is nonparametrically identified

up to an additive constant, while Ackerberg et al. (2022) demonstrate the nonparametric

identification of the value-added production function up to an additive constant from the

second stage onwards.15

To establish the nonparametric identification of the production function if S > 1, we

write out the joint data distribution for the second stage as:16

pϕ,k,l,z

({
{ϕbt, kbt, lbt}Tt=0 , zb

}B

b=1

)
=

B∏
b=1

S∑
s=1

Prz (zb = s|ωb0, kb0, lb0) pϕb0,kb0,lb0 (ϕb0, kb0, lb0)

×
T∏
t=1

psϕ,k,l (ϕbt, kbt, lbt|ϕbt−1, kbt−1, lbt−1)

(10)

From this equality, it follows that the data admits a structure that allows to nonparamet-

rically recover the conditional distribution of the latent clusters, the distribution of the

initial conditions, and the cluster-specific data distribution up an arbitrary ordering of the

clusters if T ≥ 6 (Kasahara and Shimotsu, 2009), or T ≥ 4 (Hu and Shum, 2012; Higgins

and Jochmans, 2023a,b) based on the observed data distribution.17 Upon identification

of these elements, one can apply the identification arguments of Gandhi et al. (2020)

for the gross output production structure or Ackerberg et al. (2022) for the value-added

production structure to each cluster-specific data distribution separately to establish non-

parametric identification of the production function and, consequently, the cluster-specific

productivity distributions up to a cluster-specific additive constant.18

15Ackerberg et al. (2022) discuss the possibility of nonparametric identification in the case labor
is dynamic but not predetermined, but argues that this requires stronger assumptions on the model
structure than currently specified.

16See Online Appendix B for a detailed derivation. Note that we discuss identification for the second
stage separately to clearly indicate that the first stage is cluster-independent and, therefore, nonpara-
metrically identified independent of the identification of cluster affiliation.

17The identification arguments build on the multilinear restrictions that originate from the difference
in each cluster’s response pattern to variation in the covariate (Higgins and Jochmans, 2023a). The
additional assumptions required for these arguments do not interfere with any of the previously discussed
assumptions for nonparametric identification in the absence of firm clusters. Note that nonparametric
identification of the conditional distribution of the latent clusters, the distribution of the initial conditions,
and the cluster-specific data distribution is established for all possible labor input choices defined in
Assumption 4.

18This process is similar to establishing nonparametric identification for a time-varying production
function and Markov process by simply repeating the steps of the analysis separately for each time
period (Gandhi et al., 2020, p.2994).

11



3 Estimation strategy

Below, we discuss the estimation strategy for the model structure specified above. We

start by laying out the empirical specification and compare it to the dominant approach

in the literature using Generalized Method of Moments (GMM). We discuss how we de-

termine the optimal number of clusters and demonstrate the performance of the proposed

estimation approach using a Monte Carlo exercise.

3.1 Empirical specification

The methodology proposed in this paper builds on existing two-stage estimation methods

by directly applying the first stage estimation (Ackerberg et al., 2015; Gandhi et al., 2020).

These first-stage estimation procedures are consistent with the proposed generalization of

the Markov process of productivity, as they rely on flexible production factors unaffected

by different expectations regarding future productivity shocks between groups of firms

(see the model specification above and Ackerberg, 2021).

The second-stage estimation equation (9) simplifies to a standard equation that can be

estimated with GMM if S = 1 (Ackerberg et al., 2015; Gandhi et al., 2020). When S > 1,

equation (9) contains a cluster affiliation indicator that is latent to the researcher. While

our model structure is nonparametrically identified, we resort to parametric restrictions

in our estimation specification to keep the estimation procedure computationally feas-

ible and practical. We demonstrate in the next subsection, 3.2, that these parametric

restrictions are sufficiently general to approximate a nonparametric approach.

Assumption 8 - Productivity parametrization: We assume productivity follows a

Gaussian mixture.

The assumption that productivity follows a Gaussian mixture is shared by Ackerberg et al.

(2015); Kasahara et al. (2023), and is in line with Dewitte et al. (2022) who demonstrate

that firm-size distribution is best represented by a finite mixture of log-normals.19

19Aside from empirical evidence, two arguments favor the (log-)normal specification of productivity.
First, from the perspective of overall fit, a mixture of normal distributions with sufficient components
is shown to be able to approach all distributions (McLachlan and Peel, 2000). This argument implies,
however, that the number of mixtures does not necessarily coincide with the number of clusters in
the data. Second, from a generative perspective for individual components, the normal distribution
is the realization of applying the central limit theorem, whereby firm productivity is approximately
normally distributed if it is the sum of many independent random variables. This corresponds to the
multi-dimensional definition of productivity, for example, when accounting for the product dimension
(Bernard et al., 2009) or uncertainty in demand and/or supply (see, for instance, De Loecker, 2011; Bas
et al., 2017; Gandhi et al., 2020).

12



Assumption 9 - Cluster affiliation parametrization: We model the conditional

probability of belonging to a specific cluster as a multinomial logit for zb:

Prz(zb = s|ωb0, kb0, lb0;γ
1, . . . ,γs) =

eγ
s
0+γs

kkb0+γs
l lb0+γs

ωωb0∑S
i=1 e

γi
0+γi

kkb0+γi
l lb0+γi

ωωb0
, ∀s = 1, . . . , S. (11)

where γs ≡ {γs
0, γ

s
k, γ

s
l , γ

s
ω} is a cluster-specific vector gathering the parameters of the

multinomial logit model.

Lastly, we restrict Assumption 4 further regarding the labor input choice.

Restriction A of Assumption 4 - Timing of labor input choice: Labor is decided

upon at time t− 1 and, therefore, predetermined lbt ∈ Ibt.

Under the additional parametric assumptions imposed by Assumptions 8-9 and Restric-

tion A of Assumption 4 on the timing of labor input choice, we specify the Maximum

Likelihood (ML) equation (LA(·)), i.e., the partial log-likelihood to be maximized based

on equation (10), as follows:

LA (Θ) =
B∑
b=1

log

(
S∑

s=1

Prz(zb = s|ωb0, kb0, lb0, ;γ)
T∏
t=1

psϕ(ϕbt|lbt, kbt, ϕbt−1, kbt−1, lbt−1;θ
s)

)
,

(12)

where θs is a cluster-specific vector that captures the parameters of the productivity

process gs(·) and the production function hkl(·), and Θ ≡
{
γ1, . . . ,γS,θ1, . . . ,θS

}
. By

only maximizing over the partial likelihood, we avoid specifying the marginal model for

the initial dependent variables or specifying a model for kbt and lbt.
20 Even though this

implies losing information, we simplify the analysis and gain robustness because we do

not have to specify these additional components explicitly. This is an advantage that our

approach shares with the commonly employed GMM approach (Olley and Pakes, 1996;

Levinsohn and Petrin, 2003; Ackerberg et al., 2015; Gandhi et al., 2020), as inputs may be

chosen as part of a complex dynamic optimization process (Ackerberg et al., 2015).

Labor, however, may be a dynamic but not predetermined input (Doraszelski and Jau-

mandreu, 2013; Ackerberg et al., 2015).

Restriction B of Assumption 4 - Timing of labor input choice: Labor is decided

upon at time t or t− i with 0 < i < 1 and is, therefore, correlated with the productivity

shock ηbt.

When labor is endogenous, it is common to instrument it with its lagged value, which

needs to be taken into account when specifying the observed likelihood.

20The marginal model for the initial dependent variables is cluster-independent such that it cancels
out from all posterior distributions specified during the estimation procedure.
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Assumption 10: Labor demand parametrization: We specify a reduced-form

equation for endogenous labor with exogenous instruments kbt, lbt−1, ϕbt−1 and a normally

distributed error term (ζbt ∼ N
(
0, (σs

ζ)
2
)
), such that:21

lbt = δs0 + δ1kbt + δs2ϕbt−1 + δs3kbt−1 + δs4lbt−1 + ζsbt. (13)

Under the additional parametric assumptions imposed by Assumptions 8-10 and Restric-

tion B of Assumption 4 on the timing of the labor input choice, we specify our Limited

Information Maximum Likelihood (LIML) equation (LB(·)), i.e., the partial log-likelihood
to be maximized based on equation (10), as follows:

LB (Θ) =
B∑
b=1

log

(
S∑

s=1

Prz(zb = s|ωb0, kb0, lb0, ;γ)
T∏
t=1

psϕ,l(ϕbt, lbt|kbt, ϕbt−1, kbt−1, lbt−1;θ
s)

)
.

(14)

Both the ML (12) and LIML approach (14) rely on the expectation-maximization al-

gorithm. This algorithm allows us to jointly estimate the production function parameters,

the cluster-specific parameters of the productivity process, and the unobserved cluster

affiliation probabilities. We refer the interested reader to Online Appendix C for details

on the estimation procedure.

3.2 Comparison with the GMM approach

The proposed (LI)ML approach in this paper introduces a novel estimation approach to

account for latent heterogeneity in productivity evolution, achieved through the use of

functional form restrictions. In comparison to the non-parametric GMM estimator, our

estimation framework necessitates two to three parametric assumptions. We assume that

productivity is log-normally distributed, the conditional cluster probability follows a mul-

tinomial logit model, and in the case that labor is not considered a predetermined input,

we model endogenous labor as a reduced-form function incorporating exogenous instru-

ments and a normally distributed error term. By examining the unconditional moment

conditions associated with these approaches, we explore the strengths and weaknesses of

the (LI)ML approach, as well as the restrictiveness of its parametric assumptions relat-

ive to the commonly used GMM approach. The just-identified moment conditions for

a Cobb-Douglas production function with a linear Markov process for productivity are

presented in Table 1.22

To begin, we examine how heterogeneity in the productivity process influences the afore-

21We closely follow Ackerberg et al. (2015), and Gandhi et al. (2020), and rely on an exactly identified
case with a one-period lagged instrument for labor as our main specification. Including additional
instruments is feasible with this methodology.

22We refer to Online Appendix C for the derivation of these conditions.
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Table 1: Overview of unconditional moment conditions

Approach Moment condition

GMM E

∑N
n=1 I (Eb = n) ηnbt


kbt

lbt(−1)

1

ωbt−1


 = 0

ML E

∑S
s=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
ηsbt


∂βk

ηsbt
∂βl

ηsbt
1

ωbt−1


 = 0

LIML E

∑S
s=1 Prz

(
zb = s| {kbτ , lbt, ϕbt}Tt=0 ;Θ

)(
ηsbt −

σs
η,ζ

(σs
ζ)

2 ζsbt

)
∂βk

ηsbt
∂βl

ηsbt
1

ωbt−1


 = 0

Note: The presented moment conditions represent the just-identified unconditional moment con-
ditions for a Cobb-Douglas production function with a linear Markov process for productivity.

mentioned moment conditions. In the commonly employed GMM approach, heterogen-

eity is typically addressed through a deterministic cluster affiliation approach. Let us

consider a scenario where we observe in the data a categorical variable Eb with N categor-

ies that determine cluster affiliation. This categorical variable governs the heterogeneity

in the Markov process of productivity (
∑N

n=1 I (Eb = n) ηnbt where I is an indicator func-

tion) and gives rise to the resulting moment conditions outlined in the first row of Table

1. It is important to note that researchers are typically uncertain whether this categorical

variable accurately determines the actual cluster affiliation, and whether the number of

categories corresponds to the number of clusters (N = S) or not. When N < S, the

process becomes misspecified, the likelihood of which is present as discussed in the intro-

duction. The production function is conventionally estimated with N = 1.23 Addition-

ally, the presence of possible measurement error in the categorical variables contributes

23Under a Cobb-Douglas production function and an AR(1) productivity process with two firm-clusters
(S = 2):

ϕbt = βkkbt + βllbt + Ib (s = 1)
(
α1
0 + α1

1 (ϕbt−1 − βkkbt−1 − βllbt−1) + η1bt
)

+ Ib (s = 2)
(
α2
0 + α2

1 (ϕbt−1 − βkkbt−1 − βllbt−1) + η2bt
)
.

However, if we assume a unitary cluster affiliation (S = 1), the specification becomes:

ϕbt = βkkbt + βllbt + α∗
0 + α∗

1 (ϕbt−1 − βkkbt−1 − βllbt−1) + η∗bt.

and thus, if α1,2
0,1 ̸= 0, then the omitted cluster-indicator is by construction correlated with the remaining

explanatory variables and will bias the estimated coefficients (for an in-depth discussion, see De Loecker,
2013).
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to cluster misallocation, resulting in biased estimators.

In contrast, the proposed (LI)ML approach adopts a different strategy by modeling the

unobserved cluster affiliation zb as a random variable. The probability of this random

cluster affiliation is determined solely based on readily available information, referred

to as the random cluster affiliation, i.e.,
∑S

s=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
ηsbt. This

approach is reflected in the second and third rows of Table 1. One key advantage of

this approach is that it allows to estimate production function parameters without prior

knowledge of firm cluster affiliation. In the unlikely circumstance where prior information

regarding cluster affiliation is available, the proposed approach performs just as effect-

ively as the deterministic GMM approach.24 Moreover, by employing a random specifica-

tion, this approach also accommodates measurement error in the categorical variables (as

demonstrated in the Monte Carlo simulation below). For estimation purposes, however,

we assume this conditional cluster probability follows a multinomial logit model.

Next, let’s consider the instruments utilized in specifying the moment conditions. In the

GMM approach, these instruments are typically the current levels of inputs, assuming

labor is predetermined (kbt, lbt). However, when labor is not predetermined, it is common

practice to instrument current labor with lagged labor values (kbt, lbt−1). In contrast, if

labor is predetermined, we propose to employ a Maximum Likelihood (ML) estimation

to estimate the production function. The resulting moment conditions (refer to Table

1, row two) rely on the derivatives of the error term with respect to input coefficients,

denoted as ∂βxηbt, rather than the input levels themselves, xbt. In a scenario with a single

cluster, these moment conditions are equivalent to those of a Nonlinear Least Square

Estimator, and they do not necessitate additional parametric assumptions beyond those

of the GMM approach.

If labor is not predetermined, we propose employing the LIML estimation approach to

estimate the production function. In this approach, we adopt a control function frame-

work where we model the endogeneity in the error term by incorporating a reduced-form

specification for endogenous labor. Specifically, we express the error term as the differ-

ence between the latent normally distributed productivity shock, ηsbt, and the weighted

normally distributed error term from labor,

(
ηsbt −

σs
η,ζ

(σs
ζ)

2 ζsbt

)
(see Table 1, row three).

24Assume there are two clusters with a priori known cluster affiliation, i.e., we observe the indicator
variable Ib [s = 1], then:

ln
Prz(zb = 1)

Prz(zb = 2)
= γ1

0 + γ1
kkb0 + γ1

l lb0 + γ1
ωωb0 + γ1

1Ib [s = 1] ,

with the prior probabilities approximately equal to unity: γ̂1
1 = ∞ and Prz(zb = 1|Ib [s = 1] ; γ̂) ≈ 1. This

prior information on cluster affiliation is validated by the data and results in a close to perfect identifica-

tion of the posterior probability of cluster affiliation ẑ1b = Prz

(
zb = 1| {kbt, lbt, ϕbt}Tt=0 , Ib [s = 1] ; Θ̂

)
≈

1.
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Similar to ML, the LIML approach employs the derivatives of the error term with re-

spect to input coefficients, ∂βxηbt, as instruments instead of the input levels themselves,

xbt.

In Online Appendix C, we compare the empirical outcomes of this control function ap-

proach to address endogeneity issues with the traditional GMM approach, while keeping

the heterogeneity in the productivity growth process and the instruments equal. Our find-

ings reveal that a control function approach yields production function estimates highly

comparable to those obtained using the non-parametric GMM approach. This empirical

evaluation suggests that deviations between the GMM and (LI)ML estimators primar-

ily arise from the distinct specifications of the instruments rather than from parametric

restrictions.

3.3 Model selection

While the number of clusters S is assumed to be an exogenous variable in our economic

model (see Section 2), we allow the data to determine this number. Testing the order

of a finite mixture using likelihood ratio tests is difficult and rarely done, as regularity

conditions that ensure a standard asymptotic distribution for the maximum likelihood

estimates do not hold (Celeux et al., 2018). Therefore, we approach this step as a model

selection problem, in which we estimate the model for several clusters and rely on evalu-

ation criteria to determine the “true” number of clusters (Celeux et al., 2018). We rely

on two evaluation criteria: the Bayesian information criterion (BIC) and the integrated

complete-data likelihood Bayesian information criterion (ICLbic). If these evaluation cri-

teria prefer a multi-cluster over a single-cluster model specification, we interpret this as

a rejection of the homogeneity assumption for the productivity growth process.

The BIC is based on penalizing the log-likelihood function proportional to the number

of free parameters (np) in the model, such that:

BIC(S) = −2LA,B(Θ̂) + np log(BT ). (15)

The optimal model minimizes the BIC criterion over S. As such, it favors parsimonious

models and is consistent in selecting the number of mixture components when the mixture

model is used to estimate a density (Celeux et al., 2018).

One limitation is that the BIC does not consider the purpose of the modeling. It does

not account for the usefulness of additional clusters when assessing S, i.e., how well

separated the different clusters are. Clusters are well separated if the posterior cluster

probability Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
is close to 1 for one component and close to

0 for all other components. Therefore, as an alternative criterion, we consider ICLbic,
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which selects S such that the resulting mixture model leads to a clustering of the data

with the largest evidence base (Biernacki et al., 2000):

ICLbic(S) = −2

(
LA,B(Θ̂) +

[ S∑
s=1

B∑
b=1

T∑
t=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ; Θ̂

)
× log

(
Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ; Θ̂

))])
+

np

2
log(BT ).

(16)

The optimal model maximizes the ICLbic criterion over S. For example, if the mixture

components are well separated for a given S, then the term in brackets above tends to

define a clear partition of the dataset. If this is the case, the term is close to 0. On

the other hand, if the mixture components are poorly separated, the term takes values

larger than zero. Due to this additional term, the ICLbic criterion favors values of S that

give rise to partitions of the data with the strongest evidence base. In practice, ICLbic

appears to provide a stable and reliable selection of S for real data sets (Celeux et al.,

2018).

3.4 Monte Carlo

We conduct a Monte Carlo (MC) exercise to evaluate the estimator’s performance. The

focus is on the estimator’s ability to recover unobserved heterogeneity in the productivity

distribution. The setup of our MC analysis closely mimics that of Ackerberg et al. (2015),

which builds on Syverson (2001) and Van Biesebroeck (2007). The key deviation from

Ackerberg et al. (2015) is in the specification of the Markov process for productivity,

which is assumed to differ between firm clusters.25 Specifically, productivity is assumed

to follow a finite mixture AR(1) process with two clusters (S = 2):

ωbt =
2∑

s=1

I [zb = s] [αs
0 + αs

1ωbt−1 + ηsbt] , (17)

with 800 firms exogenously assigned to cluster one (s = 1) with probability Prz(zb =

1) = 0.8, and 200 firms to cluster two (s = 2) with probability Prz(zb = 2) = 0.2.

Furthermore, we follow Ackerberg et al. (2015) in assuming a normal distribution for the

cluster-specific productivity shocks ηsbt ∼ N
(
0, σs

η

)
.

Firms make optimal capital investment choices to maximize the expected (discounted)

value of future profits under convex capital adjustment costs such that the period t

capital stock (Kbt) is determined by investment at t− 1, i.e., Kbt = (1− δ)Kbt−1 + Ibt−1.

Material inputs (Mbt) are chosen at t, while labor input (Lbt) is either assumed to be

predetermined, and chosen at t − i, or not, and chosen at t (in the former case, labor

25See Online Appendix D for a complete description of the MC simulation.
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is chosen with only knowledge of eωb,t−i where i ≤ 1, not eωbt) (Ackerberg et al., 2015).

The production function is assumed Leontief in (and proportional to) materials, such

that:

Ybt = min
{
Kβk

bt L
βl

bte
ωbt , βmMbt

}
eεbt , (18)

where the true values of the output elasticity for each input are βk = 0.4, βl = 0.6, and

βm = 1. This assumes a Leontief production technology, which results in the following

value-added production function:

ybt
mbt

= βkkbt + βllbt + ωbt + εbt. (19)

We next specify four different data-generating processes (DGPs). The first DGP (DGP1)

assumes no difference in the parameters of productivity evolution across clusters, where

α1
0 = α2

0 = 1, α1
1 = α2

1 = 0.7 and σ1
ω = σ2

ω = 0.3. This specification is equivalent to the

case without latent heterogeneity and identical to the DGP in Ackerberg et al. (2015).

As such, the MC analysis on the DGP1 allows us to evaluate the appropriateness of the

LIML vis-à-vis the traditional GMM specification.

The second DGP (DGP2) introduces latent heterogeneity through differences in the pro-

ductivity evolution between two clusters of firms which are observed by the researcher.

We specify α1
0 = 1 and α2

0 = 0.8, α1
1 = 0.7 and α2

1 = 0.77, and σ1
ω = 0.3 while σ2

ω = 0.39.

Overall, this specification results in an approximate 14.5% stationary average productiv-

ity advantage for the second cluster.26 The prior probability of cluster affiliation can be

identified as:

Prz(zb = s|kb0, lb0, ωb0;γ
1,γ2) =

eγ
s
0+γs

kkb0+γs
l lb0+γs

ωωb0+γs
clusterI(s=s)∑S

i=1 e
γi
0+γi

kkb0+γi
l lb0+γi

ωωb0+γi
clusterI(i=s)

, (20)

where the fact that cluster membership is identified by the researcher is captured by the

indicator variable I (i = s). As such, the MC analysis on the DGP2 allows us to evaluate

whether LIML can approximate the traditional GMM specification when heterogeneity

is present but observed.

The third DGP (DGP3) builds on DGP2 but assumes that 10% of firms are misclassified

in clusters as observed by the researcher. This is a more realistic scenario for researchers

and allows a comparison of the deterministic approach and our proposed random approach

to cluster affiliation. Finally, the fourth DGP (DGP4) increases the difficulty further by

assuming heterogeneity is completely unobserved.

To estimate equation (19) for all DGPs, we follow the Ackerberg et al. (2015) estima-

26This is calculated as follows: 0.8
1−0.77 − 1

1−0.7 ≈ 0.145
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tion approach for the first stage. The second stage differentiates between identification

strategies. Specifically, for each of the DGPs, we follow the discussion in Section 3.2 and,

where possible, estimate: (i) a unitary cluster affiliation according to Ackerberg et al.

(2015) (Uni. GMM); (ii) a deterministic cluster affiliation where the cluster identification

variable is observed and accounted for in the Markov process (Det. GMM); and (iii) our

proposed estimation approach with random one-cluster (S = 1) and two-cluster (S = 2)

affiliation imposed, named as 1-comp. LIML and 2-comp. LIML, respectively.27

Table 2 displays the results of the MC analysis. Focusing on the evolution of productivity,

we display the normalized, relative to the true parameter values, Mean Squared Error

(NMSE)28 of the Markov process parameters α0, α1, ση for both clusters, along with

the NMSE of the average share-weighted productivity growth Ω̄ =
∑T

t=1

∑B
b=1

sharebt ωbt

T
,

where sharebt =
ybt∑B
b=1 ybt

, and of the average cluster productivity premium ω̄2 − ω̄1 where

ω̄s =
∑

b∈s
ωbt

T
∑

I(b∈s) for s = 1, 2. The NMSE allows to evaluate the bias and variance of

the estimator in one statistic. It should be noted that in the case of the 2-comp. LIML,

we rely on the model-identified rather than the imposed cluster affiliation to calculate

these statistics.

From the results for a single cluster (DGP1), we observe that the LIML identification

procedure accurately estimates the Markov process parameters, similar to the prevalent

Uni. GMM. Allowing for multiple clusters in a single-cluster environment results in effi-

ciency losses, as shown for the 2-comp. LIML estimates, with an over-estimated average

cluster productivity premium for the 2-comp. LIML.

The DGP2 reveals a bias in the productivity evolution parameters when cluster hetero-

geneity is present but not controlled for (see the Uni. GMM and the 1-comp. LIML). The

Det. GMM and the 2-comp. LIML accurately control for this heterogeneity and show-

case very similar performance. Note that the Det. GMM does not accurately identify

differences in variance across components, which is essential for valid inference. The bias

in the Markov process parameters translates to a strong bias in the average cluster pro-

ductivity premium. The bias of the average share-weighted productivity growth is much

smaller in magnitude.

When the analysis is based on mismeasured cluster affiliations (DGP3), the Det. GMM

yields biased estimates. Only the 2-comp. LIML remains relatively robust. This behavior

can be ascribed to the identification of cluster affiliation, which relies on the information

available in the initial conditions, the evolution of productivity, and the cluster affiliation

indicator. In DGP4, finally, the researcher is not able to rely on the Det. GMM approach

27For all estimators, starting values for the parameters are set to βk = 0.3 and βl = 0.7 while the true
values are βk = 0.4 and βl = 0.6.

28NMSE =
∑

i(x̂i−xi)
2

N
∑

i(x̂i)
2 for each true coefficient x and its estimate x̂ over each Monte Carlo iteration

i.
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Table 2: Monte Carlo results

Methodology α1
0 α1

1 σ1
η α2

0 α2
1 σ2

η Ω̄ ω̄2 − ω̄1

DGP1 - No Heterogeneity

Uni. GMM 0.00113 0.00019 0.00018 - - - 0.00063 0.00127

Det. GMM - - - - - - - -

1-comp. LIML 0.00107 0.00019 0.00018 - - - 0.00061 0.00119

2-comp. LIML 0.00441 0.00067 0.00065 0.03855 0.00656 0.00227 0.00095 1.04957

DGP2 - Observed Heterogeneity

Uni. GMM 0.04020 0.00034 0.00151 - - - 0.00654 2.37277

Det. GMM 0.00148 0.00018 0.00117 0.00629 0.00054 0.01576 0.00064 0.03064

1-comp. LIML 0.04013 0.00034 0.00149 - - - 0.00652 2.35942

2-comp. LIML 0.00171 0.00024 0.00023 0.00735 0.00067 0.00063 0.00068 0.04285

DGP3 - Measurement error in Observed Heterogeneity

Uni. GMM 0.04355 0.00042 0.00167 - - - 0.00963 2.08070

Det. GMM 0.00953 0.00022 0.00148 0.00440 0.00127 0.01442 0.00526 0.44151

1-comp. LIML 0.04346 0.00041 0.00165 - - - 0.00969 2.06406

2-comp. LIML 0.00198 0.00023 0.00020 0.00595 0.00053 0.00044 0.00116 0.19822

DGP4 - Latent Heterogeneity

Uni. GMM 0.04452 0.00051 0.00153 - - - 0.00998 2.44013

Det. GMM - - - - - - - -

1-comp. LIML 0.04466 0.00051 0.00152 - - - 0.01003 2.45750

2-comp. LIML 0.00225 0.00025 0.00024 0.00906 0.00070 0.00054 0.00155 0.10215

Notes: Results display the normalized mean squared error, accommodating the estimator’s bias and variance, of the
estimates obtained across 100 Monte Carlo iterations. αs

0, α
s
1, and σs

η represent the cluster-specific constant, auto-

regressive parameter, and standard deviation of the productivity shock, respectively. Ω̄ =
∑T

t=1

∑B
b=1

sharebt ωbt
T

,

where sharebt =
ybt∑B

b=1
ybt

, represents the average share-weighted productivity growth of the complete data. ω̄2−ω̄1

represents the average cluster productivity premium with ω̄s =
∑

b∈s
ωbt

T
∑

I(b∈s)
for s = 1, 2. The true coefficients

in DGP1 are as follows: α1
0 = α2

0 = 1, α1
1 = α2

1 = 0.7 and σ1
ω = σ2

ω = 0.3. The true coefficients in DGP2-4 are as
follows: α1

0 = 1, α2
0 = 0.8 α1

1 = 0.7, α2
1 = 0.77, σ1

η = 0.21, and σ2
η = 0.25.
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anymore, while the performance of the 2-comp. LIML approach remains relatively ro-

bust.

4 Application to firm-level data

Having established the performance of our estimator through MC simulations, we carry

out an empirical application of the proposed estimator using balance sheet data from the

Central Balance Sheet Office, VAT returns for revenue and intermediate input informa-

tion, and firm-level information on employment from the National Social Security Office

for Belgian manufacturing firms over the period 2008-2018.

We retain a set of active firms that report output, capital stock at the beginning of the

year, number of employees in full-time equivalents (FTE), and material costs.29 This

database is combined with a rich set of firm-level characteristics considered relevant for

productivity growth in the literature, including firm age, industry affiliation and whether

or not the firm engages in export, import and FDI activities. The data is obtained from

the Belgian Balance Sheet Transaction Trade Dataset and a Belgian survey on FDI.30 All

monetary variables are deflated using the appropriate industry-level deflators constructed

from national accounts.

We estimate separate production functions for five NACE Rev.2 industries—printing and

reproduction of recorded media (18), manufacture of rubber and plastic products (22),

manufacture of fabricated metal products, except machinery and equipment (25), man-

ufacture of machinery and equipment n.e.c. (28) and manufacture of furniture (31)—as

well as an aggregate production function for the entire manufacturing sector. These are

the five largest industries in our sample expected to have a stationary productivity growth

process.31

We parametrize the production function f(·;β) assuming both a gross-output (Gandhi

et al., 2020) and value-added (Ackerberg et al., 2015) production function under both a

Cobb-Douglas and Translog specification, with labor assumed not to be predetermined.

These production functions are estimated using either a GMM estimation approach

without allowing for unobserved heterogeneity in a linear Markov process g(ωbt−1,α)

29We clean the data simultaneously with regards to (i) levels, (ii) ratios, and (iii) ratio growth rates to
prevent the analysis from being influenced by outliers and noise. In (i), we limit the sample to observations
with more than one FTE, to industry-deflated sales, materials and capital to values larger than e1,000,
and drop from the sample firms in industry NACE Rev. 19 (coke and refined petroleum products). In
(ii), we remove the lowest and highest percentiles of the log of the labor-, capital- and materials-output
ratio within NACE Rev.2 industries, and observations with export-sales and import-sales ratios larger
than one. In (iii), we remove observations with absolute growth rates of the input-output ratios larger
than 1000% and only retain firms that are observed at least two years in a row.

30A similar database has already been used for productivity estimations by, among others, Mion and
Zhu (2013) and Forlani et al. (2023).

31See Table A.1 in the Online Appendix for summary statistics of this sector and industries.
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or using the proposed LIML with increasing heterogeneity in a linear Markov process

gs(ωbt−1,α
s) (with the total number of clusters S limited to S = 10). For space consider-

ations and conciseness, we discuss here the estimation results for a value-added Translog

production function of a specific sector (i.e., industry 22) and refer the reader to Section

5 for a complete discussion of the estimation results for all remaining specifications and

industries.

4.1 Production function estimates

Table 3 presents the production function estimates. The average output elasticities and

returns to scale (RTS) shown in the table’s first three rows indicate small, though not

statistically significant, differences between the GMM and 1-comp. LIML. Most likely,

these differences are linked to differences in efficiency. Specifically, the instruments for

LIML are constructed optimally using the nonlinear model specification E
[
∂ϕbt

∂β
ηbt

]
= 0.

In contrast, the GMM typically relies on factor input and output levels to specify moment

conditions (Ackerberg et al., 2015; Gandhi et al., 2020) (see also section 3.2).32

Interestingly, the production function estimates are robust to the relaxation of the ho-

mogeneity assumption concerning the productivity growth process. Comparing the out-

put elasticities across models with increasing heterogeneity in the productivity process

(1-comp. LIML up to 7-comp. LIML),33 we observe that the point estimates are not

identical as the number of clusters increases. However, they do not differ significantly

statistically from the 1-comp. LIML estimates. We demonstrate in Online Appendix F

that this robustness is not specific to the methodology used in this paper.

As the number of clusters increases, we find both a minor influence on the production

function coefficients and no significant effects on the shape of the productivity distribu-

tion. In particular, we report the standard deviation of the productivity estimates in

the fourth row of Table 3 and the productivity ratios for firms at various percentiles of

the distribution in the three subsequent rows. We observe that the ratios do not change

significantly as the number of clusters increases.

4.2 Latent heterogeneity in the productivity growth process

The robustness of the production function coefficients to relaxation of the homogeneity

assumption concerning the productivity growth process does not imply a lack of hetero-

32In this particular case, the GMM assigns relatively more importance to larger firms (in terms of
input use) while the LIML assigns more weight to the fast-growing firms (in terms of input use). See also
Hsiao et al. (2002) for a discussion of the difference in efficiency between GMM and ML in a dynamic
panel setting.

33We limit to exposition to 7 components in the paper for visual reasons. See Online Appendix A for
the full results.
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Table 3: Estimation results based on an application with firm-level data

GMM LIML

Description 1-comp. 2-comp. 3-comp. 4-comp. 5-comp. 6-comp. 7-comp.

Output elasticity

Capital 0.132 0.121 0.126 0.127 0.126 0.127 0.126 0.126

(0.013) (0.018) (0.018) (0.016) (0.018) (0.018) (0.020) (0.018)

Labor 0.875 0.859 0.856 0.861 0.863 0.852 0.855 0.852

(0.016) (0.022) (0.017) (0.021) (0.024) (0.026) (0.026) (0.024)

RTS 1.007 0.979 0.982 0.988 0.990 0.979 0.981 0.978

(0.011) (0.016) (0.016) (0.018) (0.021) (0.022) (0.024) (0.021)

Productivity (ω̂bt)

Std. Dev. 0.166 0.150 0.147 0.148 0.148 0.147 0.147 0.146

(0.017) (0.016) (0.014) (0.018) (0.014) (0.016) (0.017) (0.015)

75/25 ratio 1.014 1.013 1.013 1.013 1.013 1.013 1.013 1.013

(0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

95/5 ratio 1.029 1.027 1.027 1.027 1.027 1.027 1.027 1.027

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

90/10 ratio 1.039 1.034 1.035 1.035 1.035 1.034 1.035 1.035

(0.005) (0.005) (0.004) (0.006) (0.005) (0.005) (0.005) (0.005)

No. parameters 7 20 37 54 71 88 105 122

NLL -6791 -8640 -9013 -9212 -9384 -9505 -9567

BIC -13419 -16976 -17585 -17844 -18048 -18150 -18135

ICLbic -13419 -16931 -17471 -17702 -17865 -17957 -17940

Notes: The first three rows display the average labor elasticities, capital elasticities, and returns to scale across
firms. The fourth row displays the standard deviation of the productivity estimates. The next three rows report
ratios of productivity for firms at various percentiles of the productivity distribution. Standard errors displayed
between brackets are obtained using the wild bootstrap clustered at the firm level with 49 replications. No. of
parameters refers to the number of parameters in the second stage of the estimation procedure. NLL stands for
negative log-likelihood, BIC for Bayesian information criterion, and ICLbic for integrated complete-data likelihood
Bayesian information criterion. Estimates are obtained using a panel of 626 firms and 4,399 observations in the
Belgian NACE Rev. 22 industry for the period 2008-2018.

geneity in productivity growth. The goodness-of-fit indicators reported at the bottom of

Table 3 demonstrate an increasingly good model fit as the number of clusters increases,

with an optimal number of six clusters as indicated by the decrease in the BIC and ICL-

bic up to the six-comp. LIML. These six clusters are well separated, as indicated by the

posterior probabilities (see Online Appendix A, Figure A.1).

The cluster-specific coefficients for the evolution of productivity (in logs) are displayed

in Table 4. We identify firm-cluster affiliation by choosing the cluster with the maximal

posterior cluster affiliation probability per firm. We observe heterogeneity in both the

constant (αs
0) and auto-regressive parameters (αs

1) of the productivity process across

clusters, leading to a cluster hierarchy based on stationary average productivity levels

(µs
ω). For instance, cluster 3 has a clear, although not significant, productivity advantage
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Table 4: Cluster-specific characterization of the productivity evolution and its stationary
distribution.

Cluster No (s) Prop. (%) αs
0 αs

1 σs
η µs

ω σs
ω ω̄s SDs

ω

Cluster 1 24.804 0.794 0.939 0.042 12.957 0.121 12.984 0.130

(5.452) (0.169) (0.013) (0.005) (0.740) (0.021) (0.742) (0.022)

Cluster 2 21.268 0.645 0.950 0.025 12.839 0.080 12.832 0.071

(6.477) (0.492) (0.038) (0.006) (0.743) (0.035) (0.741) (0.029)

Cluster 3 20.988 1.064 0.918 0.071 13.000 0.179 13.024 0.159

(3.643) (0.209) (0.016) (0.010) (0.741) (0.020) (0.741) (0.017)

Cluster 4 18.238 0.915 0.929 0.018 12.803 0.047 12.816 0.066

(1.650) (0.383) (0.030) (0.004) (0.740) (0.018) (0.741) (0.021)

Cluster 5 9.147 2.405 0.813 0.038 12.838 0.065 12.826 0.060

(2.399) (0.625) (0.051) (0.008) (0.742) (0.018) (0.743) (0.018)

Cluster 6 5.556 3.949 0.696 0.144 12.993 0.200 13.018 0.193

(0.517) (0.428) (0.027) (0.024) (0.749) (0.036) (0.748) (0.036)

Notes: Prop. stands for the percentage of firms affiliated with each cluster. Standard errors displayed between
brackets are obtained from a clustered wild bootstrap with 49 replications. Estimates are obtained using a panel of

626 firms and 4,399 observations in the Belgian NACE Rev. 22 industry for 2008-2018. µs
ω =

αs
0

1−αs
1
, σs

ω =

√
(σs

η)2

1−(αs
1)

2 ,

ω̄s =
∑B

b=1

∑T
t=1

zsbωbt

T
∑B

b=1
zs
b

, SDs
ω =

√
1

T
∑B

b=1
zs
b

∑B
b=1

∑T
t=1 z

s
b (ωbt − ω̄s)2.

over cluster 4, with a premium of around 13− 12.8 ≈ 20%.34

In addition, we observe significant heterogeneity in the volatility of the distribution of

unexpected shocks to productivity (ση) and stationary volatility (σω) that associate with

stationary average productivity levels. Highly volatile productivity processes, such as

those of clusters 1, 3, and 6, correlate with a relatively higher average productivity level.

This indicates that firms that end up on the right tail of the productivity distribution

have done so through a relatively volatile productivity growth process. However, high

volatility in productivity does not mean that this volatility is equally persistent, as can be

deduced from the auto-regressive parameters (αs
1). Using an impulse response function

approach in Figure 2, we demonstrate that an unexpected shock to productivity has a

relatively less sizable long-lasting influence in a cluster with a volatile productivity growth

process compared to one with a relatively more stable growth process.

4.3 Characterizing latent heterogeneity in productivity

Thus far, our analysis has relied on the minimal information required to estimate a

production function, such as factor input and output information, which is the setting

most commonly available to researchers. However, additional information is available to

us regarding the age and internationalization status of firms, i.e. export, import, and/or

FDI activity. We use this additional information on firm characteristics to highlight the

34This distinction can also be visually evaluated based on the cluster-specific productivity densities
displayed in Figure A.2 in Online Appendix A.
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Figure 2: Impulse-response function of the cluster-specific productivity process.
Note: 50-year response function of the evolution of productivity of each cluster s after a one standard deviation unexpected

productivity impulse: IRF s =
∑T=50

t=0 σs
η(α

s
1)

t. Cluster affiliation is determined as the maximal posterior cluster affiliation

probability. The results shown are for estimates obtained using a panel of 626 firms and 4,399 observations in the Belgian

NACE Rev. 22 industry for the period 2008-2018.

strength of the proposed estimator and correlate it with the estimated productivity of

firm clusters.

The estimation results reported above rely on a base specification of cluster probabilities,

conditioning only on initial capital, labor, and productivity (see equation (11)). This

specification is derived under the assumption that the initial conditions contain sufficient

information to identify cluster affiliation. If this assumption fails to hold, augmenting

the base specification with additional, economically relevant (see the Introduction) firm-

level characteristics is necessary to help improve the identification of cluster affiliation.

To test this hypothesis, we augment equation (11) to the following multinomial logistic

specification:

ln
Prz(zb = s|kb0, lb0, ωb0, eb;γ

s)

Prz(zb = 1|kb0, lb0, ωb0, eb;γ1)
= γs

0 + γs
1kb0 + γs

2lb0 + γs
3ωb0 + γs

4ageb0

+ γs
5EXPb + γs

6IMPb + γs
7FDIb, ∀s = 2, . . . , S

(21)

where cluster probabilities are specified conditional on initial capital, labor, and pro-

ductivity as well as additional firm characteristics represented in the vector eb = {ageb,
EXP b, IMP b, FDIb}, such as initial age (ageb), and indicators of export (EXP b), im-

port (IMP b) and FDI activity (FDIb) over the sample period.35 Furthermore, we specify

a version of (21) without initial capital, labor, and productivity. If the considered firm-

35 We classify firms as respectively exporters, importers, or engaged in FDI if they export, import,
or engage in FDI at least at one point during the sample period. Firms that do not export, import, or
engage in FDI over the entire sample period are classified as non-exporters, non-importers, or firms not
engaged in FDI and are chosen as the reference group.
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level characteristics contain sufficient information to group firms into clusters, we expect

this specification to perform as well as our base specification.

We rely on the two augmented specifications discussed above to re-estimate the produc-

tion function with 6 clusters. The resulting log-likelihood, BIC, and ICLbic are reported

in Table 5. First, we focus on the differences between the base and augmented specifica-

tions and conclude that the former is preferred. The increase in log-likelihood obtained

by the augmented specification is insufficient to warrant the increase in the number of

parameters, as indicated by the smaller BIC and ICLbic indicators in absolute value

relative to the base specification. The stability of the base specification to alternative

specifications of cluster probabilities is in line with our Monte Carlo results and speaks

to the ability of the estimator to identify firm clusters without additional information.

Furthermore, this stability implies a substantial correlation between latent heterogeneity

and initial conditions. Specifically, additional firm-level characteristics appear to have

limited explanatory power once initial conditions are controlled for.

Table 5: Goodness-of-fit indicators for estimation with varying concomitant specifica-
tions.

Specification Log-likelihood BIC ICLbic

Base specification 9,504.57 -18,150.39 -17,956.60

Additional concomitants 9,515.91 -18,009.49 -17,819.55

Without initial capital, labor, and productivity 9,291.26 -17,846.43 -17,591.01

Notes: The base specification refers to equation (11), the augmented specification refers to equation
(21), and the specification without initial capital, labor, and productivity refers to equation (21). BIC
stands for Bayesian information criterion, and ICLbic for integrated complete-data likelihood Bayesian
information criterion. Estimates are obtained from a 6-cluster value-added Translog production function
with endogenous labor using a panel of 626 firms and 4,399 observations in the Belgian NACE Rev. 22
industry for 2008-2018.

To demonstrate how instrumental initial conditions are for cluster affiliation identification,

we evaluate the model fit for the augmented specification without initial conditions.

Despite the larger number of parameters compared to the base specification, the log-

likelihood is smaller for this augmented specification without initial conditions. The

BIC and ICLbic reaffirm the base specification’s superior performance. Therefore, even

when firm-level information regarding age and the internationalization status of a firm

is available, a significant share of the heterogeneity in productivity remains latent and

cannot be accounted for by these observable variables alone.

A closer analysis of the connection between firm characteristics and cluster affiliation can

be obtained from the summary statistics across firm clusters provided in Table 6. We can

deduce that initial productivity is strongly related to the stationary productivity levels of

the respective clusters. The relatively low-productivity clusters (clusters 3, 4, and 5) are

determined by low initial productivity, and vice versa for the relatively high-productivity

27



clusters (clusters 1, 2, and 6). This is in line with Sterk et al. (2021), who find that initial

conditions strongly determine heterogeneity in firm size.

Table 6: Average cluster characteristics

Overall Clust. 1 Clust. 2 Clust. 3 Clust. 4 Clust. 5 Clust. 6

Cluster prop. (%) 100.00 24.80 21.27 20.99 18.24 9.15 5.56
log(initial output) 15.18 16.16 14.66 14.84 16.04 13.55 14.91
log(initial capital) 13.30 13.99 12.92 12.88 14.17 12.35 12.91
log(initial labor) 2.78 3.48 2.66 2.07 3.93 1.67 2.14
log(initial productivity) 12.93 12.99 12.82 13.05 12.81 12.81 13.04
Initial age 24.92 27.10 25.73 21.37 29.99 19.40 23.00
Exporter prop. (%) 65.57 80.74 52.99 60.00 81.52 45.00 62.75
Importer prop. (%) 80.87 93.33 71.79 84.17 90.22 56.67 72.55
FDI prop. (%) 10.26 15.56 6.84 3.33 21.74 1.67 9.80

Notes: Cluster proportions (prop.) refer to the size of the respective clusters, where the maximal posterior cluster
affiliation probability determines cluster affiliation. The results are calculated based on estimates obtained using a panel
of 626 firms and 4,399 observations in the Belgian NACE Rev. 22 industry for 2008-2018.

Firm age, then, seems to be associated with the persistence of the productivity growth

process. The clusters with relatively less persistent growth processes (clusters 3, 5, and 6)

contain, on average, younger firms than those with relatively persistent growth (clusters

1, 2, and 4), which contain older firms on average. In addition, we observe that clusters

1 and 4 have a larger firm size in terms of initial output, capital, labor, and internation-

alization status, i.e., export, import, and FDI activity. Interestingly, there is a relatively

large probability of importers belonging to clusters 1 and 3, which are relatively more

volatile. This could be linked to the recent discussions about exposure to foreign shocks

through global supply chains (Baldwin et al., 2022, 2023). However, since the productiv-

ity estimates combine efficiency and demand drivers, we do not engage in a more detailed

analysis of the anatomy of these heterogeneous effects and instead focus on understanding

their economic relevance.

4.4 The impact of latent heterogeneity on exporter productiv-

ity

An intriguing observation from Table 6 is that the internationalization status of firms is

associated with multiple clusters. In particular, it appears that low-productivity firms

that are active in export, import, and/or FDI belong primarily to cluster 4, while higher-

productivity firms with an internationalized status belong primarily to cluster 1. This

observation points to heterogeneity in productivity beyond what can be captured by a

simple dummy variable; a common strategy relied on in the literature (see the Introduc-

tion). Lileeva and Trefler (2010) similarly document heterogeneity in the link between

exporter status and the evolution of productivity.
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We evaluate the economic importance of this heterogeneity by calculating the export

premium (namely, the average productivity advantage of exporting over non-exporting

firms in percentage terms), its evolution over time, and its contribution to aggregate

productivity growth. We do this for different estimators and specifications of heterogen-

eity in productivity. This exercise has two purposes. First, it allows us to empirically

demonstrate the robustness of the proposed methodology to the inclusion of additional in-

formation. Second, we demonstrate the importance of accounting for latent heterogeneity

in productivity when comparing groups of firms that differ in specific firm-level charac-

teristics, such as exporter status. Exporter performance has attracted the attention of

multiple researchers and policymakers over the past years (see, for instance, Bernard and

Bradford Jensen, 1999; Baldwin and Gu, 2003; Bernard et al., 2007; De Loecker, 2013;

Garcia-Marin and Voigtländer, 2019; Gandhi et al., 2020).

We start by specifying aggregate productivity as the revenue-share weighted sum of

firm-level productivities. A group of exporters (EXP ) and a group of non-exporters

(NONEXP ) contribute to this aggregate productivity. Groups are indicated by g =

1, . . . , G, with G = 2 here. Aggregate productivity, then, can be decomposed into the

sum of group-specific average productivities ω̄g
t =

∑
b∈g

ωbt∑
I(b∈g) and within-group and

between-group revenue share-productivity covariance terms, similar to Collard-Wexler

and De Loecker (2015):

Ωt =
B∑
b=1

sharebt ωbt

=
1

G

∑
g=EXP,NONEXP

[
ω̄g
t+

B∑
b=1

(
sharebt − share

g

t

)
(ωbt − ω̄g

t )︸ ︷︷ ︸
Within-group covariance

+(sharegt −
1

G
)(Ωg

t − Ω̄t)︸ ︷︷ ︸
Between-group covariance

]
,

(22)

where sharebt =
ybt∑B
b=1 ybt

, sharegt =
∑

b∈g ybt∑B
b=1 ybt

, share
g

t =
1
G

∑
g share

g
t , Ω

g
t =

∑
b∈g sharebt ωbt,

and Ω̄t =
1
G

∑
g Ω

g
t . The within-group revenue share-productivity covariance term cap-

tures the covariance between the revenue share and productivity within each group of

exporters and non-exporters. A positive within-group covariance indicates that more

productive firms also hold larger market shares. The between-group revenue share-

productivity covariance term captures the covariance of the aggregate revenue share and

productivity between the groups of exporters and non-exporters. A positive between-

group covariance indicates that the more productive groups also hold a larger market

share.
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We calculate this decomposition of aggregate productivity for different productivity in-

dices obtained from different estimation methodologies and different specifications of het-

erogeneity in productivity.36 Specifically, we estimate productivity using the GMM and

LIML identification strategies with (i) a base specification: ωbt = α0+α1ωbt−1+ηbt, (ii) a

deterministic control for exporter status, ωbt = α0+α1ωbt−1+α2EXPb+α3ωbt−1EXPb+

ηbt, and (iii) a more exhaustive set of controls for heterogeneity in productivity:

ωbt = α0 + α1ωbt−1 + α3ageb0 + α4EXPb + α5ωbt−1EXPb

+ α6IMPb + α7ωbt−1IMPb

+ α8FDIb + α9ωbt−1FDIb + ηbt.

(23)

Similarly, we obtain productivity from the finite mixture LIML identification strategy

with the optimal number of six clusters and (i) the base specification for cluster affiliation

(11), (ii) the base specification for cluster affiliation augmented with a deterministic

control for internationalization status using a dummy indicator, and (iii) an exhaustive

control for heterogeneity in the specification for cluster affiliation (21).

Figure 3 displays the evolution of the obtained aggregate productivities and their de-

composition across estimation methodologies and specifications. Focusing on aggregate

productivity (the left column), we observe that the evolution over time is very similar

across estimation methodologies and specifications. This behavior can be attributed to

the robustness of the production function and productivity estimates to the homogen-

eity assumption of the evolution of productivity, as reported above. This is also in line

with the MC analysis (see subsection 3.4), based on which we expect a strong bias in

the productivity premium but a smaller bias on the average share-weighted productivity

growth.

Exploring the decomposition of this aggregate productivity, we observe differences de-

pending on the estimation methodology and the specification of heterogeneity in the

Markov process, for both the GMM and LIML estimation methodologies. This contrasts

with the robustness of the finite mixture LIML across specifications. For instance, the

export premium—the difference between the average productivity of exporters (dashed

line) and non-exporters (continuous line) in the second column of Figure 3— evolves from

1.97%, for the base specification, to 3.16% for the deterministic and 2.16% for the exhaust-

ive specification of heterogeneity for the LIML methodology (see also Online Appendix

Table A.2). Notably, the observed differences in export premia between heterogeneity

specifications are relatively constant over time. In comparison, the export premium is

approximately 1.6% for all three specifications of the finite mixture LIML.

36For each estimation methodology and specification, we normalize aggregate productivity relative to
the share-weighted aggregate productivity in the initial year (Ω0) (Aw et al., 2001).
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Figure 3: Evolution of aggregate productivity and its decomposition for exporting- and
non-exporting firms.
Notes: GMM, LIML, and finite mixture LIML refer to the productivity estimation methodologies, while Base, Determ-

inistic, and Exhaustive refer to the specification of heterogeneity within these methodologies, i.e., see equations (23) and

(21).

As a result of the observed variability in export premia, the within-group and between-

group covariance terms for the GMM and LIML estimation methodologies are dependent

on the heterogeneity specification and attain negative values for some specifications. The

finite mixture LIML methodology, on the other hand, reports a slightly positive and

robust within- and between-group covariance term, meaning more productive exporters

have, on average, a greater market share.

Overall, latent heterogeneity does not strongly affect the evolution of measured aggreg-

ate productivity or of the export premium over time. It does, however, affect export

premium levels, the separate components of the aggregate productivity decomposition,

and, subsequently, conclusions drawn regarding misallocation issues across firms. As such,

correctly controlling for latent heterogeneity in productivity is of interest to any applied

researcher or policymaker interested in robust estimates of productivity premia between

groups of firms and their respective contribution to aggregate productivity growth as a

driver of economic growth and welfare.
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5 Robustness

This paper reports the estimation results for a value-added Translog production function

for NACE Rev.2 industry 22. We demonstrate in Online Appendix E that the reported

results are robust to the estimation methodology and industry selection. We evaluate the

results for four alternative estimation methodologies, assuming both gross output and

value-added under both a Cobb-Douglas and Translog specification, for all manufacturing

industries considered. The proposed method delivers economically sensible production

function estimates in all cases and confirms the results presented.

It could be of concern that our results are specific to the Belgian firm-level dataset.

Therefore, we also apply the analysis to the Chilean firm-level dataset used by Gandhi

et al. (2020). Results in Online Appendix E reaffirm the findings obtained with the

Belgian dataset. We reaffirm the robustness of the production function coefficients to

the relaxation of the homogeneity assumption in productivity, the presence of heterogen-

eity in the production process, the sufficiency of the initial conditions to identify cluster

affiliation, and the accuracy of the proposed methodology to identify productivity differ-

ences between groups of firms and their respective contribution to aggregate productivity

growth. Moreover, we find that the impact of relaxing the homogeneity assumption in

the evolution of productivity on the calculation of export premia is more pronounced for

Chile than for Belgium, with differences in the estimated productivity premia of up to

30%.

6 Conclusion

This paper proposes a general extension of state-of-the-art production function estimation

procedures to control for and identify latent heterogeneity in the evolution of productivity.

We demonstrate the applicability of this methodology by means of a Monte Carlo simula-

tion and an application to Belgian and Chilean firm-level data. We find strong evidence

of latent heterogeneity in the evolution of productivity. This unobserved heterogeneity is

associated with the initial conditions of a firm, especially the starting level of productiv-

ity. The uncovered importance of ex-ante heterogeneity relative to ex-post shocks is in

line with earlier literature and becomes relevant for understanding the macroeconomic

effects of firm-level characteristics.

Of interest to the applied economist, production function coefficients and the overall

evolution of aggregate productivity obtained from current productivity estimation meth-

odologies seem robust to this latent heterogeneity. In line with Fernandes (2007) and

De Loecker (2013), however, we find that the characterization of heterogeneity in pro-

ductivity is not robust to latent heterogeneity. Additional explanatory variables expected

32



to capture differences in the evolution of productivity, such as the firm’s export, import,

and FDI status, are associated with multiple productivity clusters obtained from the

proposed method. This indicates heterogeneity in productivity beyond what is captured

by the observed firm-level characteristics. As a result, current productivity estimation

methodologies require additional firm-level information that remains notoriously unavail-

able, especially for hard-to-quantify productivity determinants such as intangible capital

or managerial capacity. The proposed methodology, on the other hand, maintains its

performance irrespective of the presence of this type of supplementary information.

Building on the newly developed productivity estimation strategy, one can systematically

search for the main determinants of productivity growth, which is accurately identified

along with its underlying clusters. Obtaining such insight is based on notions of similar-

ity and dissimilarity between firms and groups of firms. Firms in the same cluster share

the same growth process and are thus “similar”, while heterogeneity allows “dissimilar”

firms to grow at a different pace across clusters. The advantage of this approach is its

flexibility to allow for and identify an unobserved firm cluster structure. Conversely,

current methods work with a predefined cluster of firms—such as an export-specific pro-

ductivity growth processes—and aim to find within-cluster determinants of productivity

growth. To that end, the proposed approach allows the data to determine firm clusters

and identify the between-cluster determinants of productivity growth, i.e., the firm-level

characteristics that drive cluster affiliation.

As such, the methodology proposed in this paper opens up exciting new avenues for re-

search. It is of relevance to every applied researcher interested in accurately recovering

the effects of a firm-specific characteristic (e.g. engagement in export activity) on the

evolution of firm-level productivity by accounting for unobserved heterogeneity in pro-

ductivity. However, while the proposed methodology allows us to identify unobserved

heterogeneity in productivity correctly, further work is needed to fully understand the

drivers of this heterogeneity.
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Appendix A Additional Figures and Tables

A.1 Figures
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Figure A.1: Histogram of posterior probabilities for a 6-cluster (ACF) value-added Trans-
log production function of NACE Rev. 22 estimated with LIML.
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Figure A.2: Complete and cluster-specific density of productivity in 2013 obtained from
a 6-cluster value-added Translog production function of NACE Rev. 22 estimated with
LIML.

A.2 Tables

A–1



Table A.1: Summary Statistics

Industry Variable # Obs. # Firms Min. Q25 Median Q75 Max Mean sd

Manufacturing sector Log(Sales) 103170 14344 10.28 13.26 14.17 15.36 22.90 14.45 1.60

Manufacturing sector Log(Employment) 103170 14344 0.22 1.32 2.11 3.15 8.99 2.34 1.33

Manufacturing sector Log(Capital) 103170 14344 6.91 11.44 12.67 13.78 20.61 12.64 1.86

Manufacturing sector Log(Materials) 103170 14344 9.11 12.67 13.71 14.99 22.60 13.97 1.73

Industry 18 Log(Sales) 7321 1109 11.14 12.99 13.59 14.51 18.62 13.84 1.21

Industry 18 Log(Employment) 7321 1109 0.22 1.01 1.66 2.53 6.24 1.87 1.10

Industry 18 Log(Capital) 7321 1109 6.92 11.25 12.47 13.49 18.25 12.37 1.70

Industry 18 Log(Materials) 7321 1109 9.91 12.46 13.12 14.14 18.54 13.36 1.31

Industry 22 Log(Sales) 4310 616 11.70 14.15 15.10 16.23 19.93 15.24 1.51

Industry 22 Log(Employment) 4310 616 0.22 1.83 2.80 3.76 7.19 2.86 1.36

Industry 22 Log(Capital) 4310 616 7.29 12.22 13.39 14.61 17.90 13.35 1.79

Industry 22 Log(Materials) 4310 616 10.51 13.72 14.76 15.96 19.67 14.86 1.61

Industry 25 Log(Sales) 21357 3197 10.93 13.33 14.07 14.90 20.51 14.19 1.23

Industry 25 Log(Employment) 21357 3197 0.22 1.39 2.08 2.88 8.21 2.18 1.12

Industry 25 Log(Capital) 21357 3197 6.91 11.38 12.56 13.48 18.19 12.41 1.60

Industry 25 Log(Materials) 21357 3197 9.29 12.72 13.58 14.48 20.20 13.67 1.36

Industry 28 Log(Sales) 5781 954 11.54 13.93 14.74 15.80 21.40 14.93 1.42

Industry 28 Log(Employment) 5781 954 0.22 1.61 2.48 3.44 8.12 2.58 1.31

Industry 28 Log(Capital) 5781 954 6.99 11.55 12.76 13.76 19.24 12.63 1.70

Industry 28 Log(Materials) 5781 954 9.76 13.39 14.25 15.38 21.24 14.41 1.51

Industry 31 Log(Sales) 5558 806 11.07 13.24 13.96 14.80 18.95 14.13 1.22

Industry 31 Log(Employment) 5558 806 0.22 1.25 2.01 2.89 5.81 2.15 1.14

Industry 31 Log(Capital) 5558 806 6.94 11.30 12.42 13.36 17.25 12.30 1.57

Industry 31 Log(Materials) 5558 806 10.14 12.68 13.47 14.42 18.77 13.65 1.32

Table A.2: Average export premia across productivity estimation methodologies and
specifications

Methodology Specification Industry 18 Industry 22 Industry 25 Industry 28 Industry 31

GMM Base 0.0032 -0.0179 -0.0039 0.0520 0.0108

(0.0009) (0.0041) (0.0022) (0.0062) (0.0027)

GMM Deterministic 0.0032 0.0061 0.0162 0.0783 0.0838

(0.0009) (0.0036) (0.0020) (0.0060) (0.0028)

GMM Exhaustive 0.0032 0.0160 0.0246 0.1071 0.0932

(0.0009) (0.0035) (0.0020) (0.0053) (0.0026)

LIML Base -0.0153 0.0197 0.0260 0.1048 -0.0086

(0.0008) (0.0034) (0.0022) (0.0068) (0.0035)

LIML Deterministic 0.1053 0.0316 0.0382 0.1420 -0.0056

(0.0014) (0.0033) (0.0021) (0.0065) (0.0034)

LIML Exhaustive 0.1045 0.0216 0.0438 0.1296 0.0284

(0.0014) (0.0034) (0.0021) (0.0067) (0.0029)

Finite Mixture LIML Base -0.0132 0.0160 0.0098 0.0467 -0.0157

(0.0009) (0.0034) (0.0021) (0.0070) (0.0036)

Finite Mixture LIML Deterministic -0.0113 0.0167 0.0100 0.0472 -0.0145

(0.0009) (0.0034) (0.0021) (0.0070) (0.0036)

Finite Mixture LIML Exhaustive -0.0075 0.0159 0.0095 0.0440 -0.0138

(0.0009) (0.0034) (0.0021) (0.0070) (0.0036)

Notes: Export premia obtained from a log-linear regression with year dummies t, ωbt = αExpb + t + ϵbt, where
productivity is obtained from GMM, LIML and Finite Mixture LIML estimation methodologies with a base, de-
terministic or exhaustive specification of heterogeneity within these methodologies, i.e. see equations (23) and (21).
Standard errors between brackets are obtained from the OLS regression.
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Appendix B Nonparametric Identification

The equation below rewrites the joint data distribution to a structure that allows non-

parametric identification of its elements.

pϕ,k,l,z

({
{ϕbt, kbt, lbt}Tt=0 , zb

}B

b=1

)
=

B∏
b=1

S∑
s=1

pϕb0,kb0,lb0,zb (ϕb0, kb0, lb0, zb)

×
T∏
t=1

pϕ,k,l,z
(
ϕbt, kbt, lbt, zb = s| {ϕbτ , kbτ , lbτ}t−1

τ=1 , zb = s
)

=
B∏
b=1

S∑
s=1

Prz (zb = s|ϕb0, kb0, lb0) pϕb0,kb0,lb0 (ϕb0, kb0, lb0)

×
T∏
t=1

psϕ,k,l,z
(
ϕbt, kbt, lbt| {ϕbτ , kbτ , lbτ}t−1

τ=1

)
=

B∏
b=1

S∑
s=1

Prz (zb = s|ϕb0, kb0, lb0) pϕb0,kb0,lb0 (ϕb0, kb0, lb0)

×
T∏
t=1

psϕ
(
ϕbt|kbt, lbt, {ϕbτ , kbτ , lbτ}t−1

τ=1

)
P s
k,l

(
kbt, lbt| {ϕbτ , kbτ , lbτ}t−1

τ=1

)
=

B∏
b=1

S∑
s=1

Prz (zb = s|ωb0, kb0, lb0) pϕb0,kb0,lb0 (ϕb0, kb0, lb0)

×
T∏
t=1

psϕ (ϕbt|kbt, lbt, ϕbt−1, kbt−1, lbt−1) p
s
k,l (kbt, lbt|ωbt−1, kbt−1, lbt−)

=
B∏
b=1

S∑
s=1

Prz (zb = s|ωb0, kb0, lb0) pϕb0,kb0,lb0 (ϕb0, kb0, lb0)

×
T∏
t=1

psϕ,k,l (ϕbt, kbt, lbt|ϕbt−1, kbt−1, lbt−1)

(B.1)

The first equality follows from the assumption that firm types are determined in the

initial period (Assumption 1). The second equality factorizes the joint distribution into

a model for zb conditional on the initial information set and a marginal model for this

initial information set. Equality three restricts the type-specific conditional distribution

function for the observable information set to a first-order Markov process based on the

regression specification for ϕbt (eq. (9)) and on the assumptions on the timing of the

input choices (Assumption 4). Notice that we rely on the functional relation between ϕbt

and ωbt, given kbt and lbt in equality 4 and 5 to swap conditioning variables.
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Appendix C Estimation

This section describes the production function estimation techniques used in this paper.

We summarize the proxy variable Ackerberg et al. (2015) and the first-order condition

Gandhi et al. (2020) methods for the case when S = 1, before advancing to our proposed

Mixture (LI)ML estimator for S ≥ 1.

C.1 Proxy variable methods

The estimation strategy proposed by Ackerberg et al. (2015) for a value-added production

function consists of two stages. In the first stage, one relies on the materials as a proxy

for productivity to single out the ex-post Hicks-neutral productivity shock and possible

classical measurement error εbt:

ybt
mbt

= fkl (kbt, lbt) +M−1 (kbt, lbt,mbt) + εbt. (C.1)

The consistent estimates from this first stage estimation allow us to retrieve the non-

flexible output (log value-added) variation:

ϕbt ≡
ybt
mbt

− εbt = fkl (kbt, lbt) + ωbt. (C.2)

Building on the assumption that productivity evolves according to a first-order Markov

process (Assumption 4), we obtain the second stage estimation equation:

ϕbt = fkl (kbt, lbt) + g (ϕbt−1 − fkl (kbt−1, lbt−1)) + ηbt. (C.3)

Consistent parameter estimates for the production function can be obtained building on

the moment conditions following from the independence between the timing of factor

input decisions and the unexpected shocks to productivity:

E
[
ηbt|kbt, lbt(−1), ϕbt−1

]
= 0. (C.4)

We parametrize equation (C.3) with production function coefficients β and specify a

linear first-order Markov process g(ϕbt−1−fkl(lbt−1, kbt−1;β);α) = W bt−1α with W bt−1 =

[1, ωbt−1], and θ = {β,α} such that

ϕbt = fkl (kbt, lbt;β) +W bt−1α+ ηbt. (C.5)

We transform the conditional moments specified above into unconditional moment con-
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ditions for actual estimation:

E

ηbt


kbt

lbt(−1)

1

ωbt−1


 = 0. (C.6)

These moment conditions are linear in the Markov process parameters α and non-linear in

the production function parameters β. To speed up the estimation procedure by reducing

the non-linear parameter space, we iteratively search for the optimal, non-linear, produc-

tion function parameters and, given the production function parameter estimates, rely on

a closed-form solution for the linear Markov process parameters at each iteration.

First, we specify the optimization problem for the production function parameters, β.

With instrumental variables Zbt =
[
kbt, lbt(−1)

]
and a weighting matrix

(
ZT

btZbt

B

)−1

, the

optimization criterion is:

argmin
β

Λ(β) = argmin
β

(∑B
b=1

∑T
t=1 Z

T
btηbt

B

)T (∑B
b=1

∑T
t=1Z

T
btZbt

B

)−1(∑B
b=1

∑T
t=1Z

T
btηbt

B

)
,

(C.7)

with the corresponding First-Order Condition (FOC):

∇βΛ(θ) = 0 = −2

(
1

B

B∑
b=1

T∑
t=1

(Zbt)
T∇βηbt

)(
(Zbt)

TZbt

B

)−1
(

1

B

B∑
b=1

T∑
t=1

(Zbt)
Tηbt

)

⇔ 0 =

(
1

B

B∑
b=1

T∑
t=1

(Zbt)
T∇βηbt

)(
(Zbt)Zbt

B

)−1
(

1

B

B∑
b=1

T∑
t=1

(Zbt)
Tηbt

)
,

where ∇β(ηbt) = −∇βf
kl (kbt, lbt;β) + α1∇βf

kl (kbt−1, lbt−1;β) +W bt−1∇βα.

In every iteration, we optimize for the Markov process parameters, α, given a value of

the production function parameters, β. The optimization criterion with weighting matrix(
W T

btW bt

B

)−1

is:

argmin
α

Λ(α) =

argmin
α

(∑B
b=1

∑T
t=1W

T
btηbt(β̂)

B

)T (∑B
b=1

∑T
t=1W

T
btW bt

B

)−1(∑B
b=1

∑T
t=1W

T
btηbt(β̂)

B

)
,

(C.8)

and the corresponding FOC provides a closed-form solution for the parameter estim-
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ates:

∇αΛ(θ) = 0 = −2

(
1

B

B∑
b=1

T∑
t=1

W T
bt−1W bt−1

)(
W T

bt−1W bt−1

B

)−1(
1

B

B∑
b=1

T∑
t=1

W T
bt−1ηbt

)

⇔ α =

(
B∑
b=1

T∑
t=1

W T
bt−1W bt−1

)−1( B∑
b=1

T∑
t=1

W T
bt−1ωbt

)
.

C.2 First-order condition methods

As in the previous section, the estimation strategy proposed by Gandhi et al. (2020)

consists of two stages, but for for a gross output production function. In the first stage,

one relies on the materials as a proxy for productivity to single out the ex-post Hicks-

neutral productivity shock and possible classical measurement error εbt:

Starting from a gross output production function:

ybt = fklm (kbt, lbt,mbt) + ωbt + εbt, (C.9)

the estimator proposed by Gandhi et al. (2020) consists of two stages. In a first stage,

one relies on the log-linearized material share equation, obtained from the first-order

condition for the profit-maximizing decision on material inputs, to identify the elasticity

of output with respect to materials and the ex-post Hicks-neutral productivity shock

εbt:

log

(
PM
t Mbt

P Y
t Ybt

)
= log (E) + log

(
∂fklm (kbt, lbt,mbt)

∂mbt

)
− εbt (C.10)

where E = Eε [e
εbt ] and PM

t , P Y
t are aggregate material and output prices, respectively.

The output from this first stage estimation enables us to define the ‘non-flexible’ output

variation as:

ϕbt = ybt − εbt −
∫

∂fklm (kbt, lbt,mbt)

∂mbt

dmbt = hkl (kbt, lbt) + ωbt. (C.11)

Relying on the productivity evolving according to a first-order Markov process, (Assump-

tion 4), this results in the second stage estimation equation

ϕbt = hkl (kbt, lbt) + g (ϕbt−1 − hkl (kbt−1, lbt−1)) + ηbt. (C.12)

Consistent parameter estimates for the production function can be obtained building on

the moment conditions following from the independence between the timing of factor
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input decisions and the unexpected shocks to productivity:

E
[
ηbt|kbt, lbt(−1), ϕbt−1

]
= 0. (C.13)

We parametrize equation (C.12) with production function coefficients β and specify a

linear first-order Markov process g(ϕbt−1−fkl(lbt−1, kbt−1;β);α) = W bt−1α with W bt−1 =

[1, ωbt−1], and θ = {β,α} such that

ϕbt = hkl (kbt, lbt;β) +W bt−1α+ ηbt. (C.14)

This specification takes a very similar form to the estimation equation for the proxy

variable method specified above. The remaining unconditional moment conditions and

optimization criteria are equivalent to those of the proxy variable methods expressed

above (see equations (C.20), (C.7), and (C.8)).

C.3 Mixture (limited information) maximum likelihood

The methodology proposed in this paper builds on existing two-stage estimation methods

for the first stage estimation (Ackerberg et al., 2015; Gandhi et al., 2020). These first-

stage estimation procedures (see above) are consistent with the proposed generalization of

the Markov process of productivity, as they rely on flexible production factors unaffected

by different expectations regarding future productivity shocks between groups of firms

(Ackerberg, 2021). As discussed in the main text, however, the second-stage specification

is dependent on the timing assumption of the labor input decision. We specify the

estimator for different timing assumptions below.

C.3.1 Estimation procedure

We rely on the expectation-maximization algorithm (McLachlan and Peel, 2000; Miljkovic

and Grün, 2016) to maximize the ML specification (eq. (12)) or LIML specification (eq.

14). In the EM framework, the log-likelihoods specified in the main text are regarded

as being incomplete as they do not account for the unobserved cluster affiliation. When

accounting for cluster affiliation (zsb = I (zb = s)), the complete (c) partial log-likelihood

specifications become:
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Lc
A (Θ, z) =

B∑
b=1

S∑
s=1

zsb log

(
Prz(zb = s|ωb0, kb0, lb0, ;γ)

T∏
t=1

psϕ(ϕbt|lbt, kbt, ϕbt−1, kbt−1, lbt−1;θ
s)

)
(C.15)

Lc
B (Θ, z) =

B∑
b=1

S∑
s=1

zsb log

(
Prz(zb = s|ωb0, kb0, lb0, ;γ)

T∏
t=1

psϕ,l(ϕbt, lbt|kbt, ϕbt−1, kbt−1, lbt−1;θ
s)

)
,

(C.16)

which form the basis for our estimation procedure. We discuss first the more general LIML

estimation approach when labor is decided upon at time t or t− i with 0 < i < 1, before

discussing the ML approach where labor is decided upon at time t − 1 and, therefore,

predetermined.

C.3.2 Labor is decided upon at time t or t− i with 0 < i < 1

If labor is assumed to be a dynamic but not predetermined input, we have to consider

the possible correlation between the unexpected shock to productivity and labor choice

(Ackerberg et al., 2015). We, therefore, estimate the parameters of interest based on

equation (C.16) relying on the expectation-maximization algorithm (McLachlan and Peel,

2000; Miljkovic and Grün, 2016). This algorithm consists of maximizing the complete

log-likelihood in an iterative procedure. Assume parameter values in iteration j are

represented by (Θ)j ≡
{
(γ1)j, . . . , (γS)j, (θ1)j, . . . , (θS)j

}
, then the steps of the iterative

procedure are as follows:

1. Use the current-iteration starting values for the parameters, (Θ)j,1 and approximate

cluster affiliation with the posterior conditional probability obtained from Bayes’

theorem:

ẑsb = Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ; (Θ)j

)
=

Prz(zb = s|ωb0, kb0, lb0; (γ
s)j)

∏T
t=1 p

s
ϕ,l(ϕbt, lbt|kbt, ϕbt−1, lbt−1, kbt−1;θ

s)

pϕ,l

(
{ϕbt}Tt=0 , {lbt}

T
t=0 ; (Θ)j

) .

2. In a second step, these approximations of cluster affiliation are relied upon to es-

timate the parameters (Θ)j+1:

1Starting values for the first iteration are obtained from an OLS production function estimation.
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(i)

max
(θ)j+1

Λ(θj+1) = max
(θ)j+1

B∑
b=1

S∑
s=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ; (Θ)j

)
× log

(
T∏
t=1

psϕ,l(ϕbt, lbt|kbt, ϕbt−1, kbt−1, lbt−1; (θ
s))j+1

)
;

(ii)
max
(γs)j+1

Λ((γs)j+1) = max
(γs)j+1

B∑
b=1

S∑
s=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ; (Θ)j

)
× log

(
Prz(zb = s|kb0, lb0, ωb0; (γ

s)j+1)
)
.

This iterative process continues until there is relative stability between iterations j and

j + 1 in terms of the log-likelihood.

The maximum likelihood estimation of the conditional probability of cluster affiliation,

step 2.(ii), is implemented using the multinom function of the nnet R package with

maximum likelihood (i.e. when entropy = TRUE) rather than least-squares optimiza-

tion (i.e. when entropy = FALSE). However, the maximum likelihood estimation of the

cluster-probability weighted observed log-likelihood (Λ(θj+1)), step 2.(i), is slightly more

involved.

Following from Assumptions 8 and 10, the observed likelihood attains a bivariate normal

specification:

psϕ,l(ϕbt, lbt|kbt, ϕbt−1, kbt−1, lbt−1;β,α
s, δs,Σs︸ ︷︷ ︸
≡θs

) =
e−

1
2
(ϵs)T (Σs)−1(ϵs)√
(2π)2|Σs|

, (C.17)

where ϵs =

[
ϕbt − fkl (kbt, lbt;β)− g(ϕbt−1 − fkl(kbt−1, lbt−1;β);α

s)

lbt − δs0 − δ1kbt − δs2ϕbt−1 − δs3kbt−1 − δs4lbt−1

]
andΣs =

[
(σs

η)
2 σs

η,ζ

σs
η,ζ (σs

ζ)
2

]
.

To simplify the estimation procedure, we rely on the observation that equation (C.17) can

be factorized into a density of the endogenous variables conditional on the instrumental

variables, psϕ,l(ϕbt, lbt) = psϕ(ϕbt|lbt)psl (lbt), such that

psϕ(ϕbt|kbt, lbt, ϕbt−1, kbt−1, lbt−1;β,α
s, σs

η, σ
s
η,ζ) =

T∏
t=1

1√
2π

[(
σs
η

)2 − (σs
η,ζ)

2

(σ̂s
ζ)

2

]e
− 1

2

ηsbt−
σs
η,ζ

(σ̂s
ζ)

2 ζsbt


2

(σs
η)

2−
σs
η,ζ

(σ̂s
ζ)

2

,

(C.18)

and

psl (lbt|kbt, ϕbt−1, kbt−1, lbt−1; δ
s, σs

ζ) =
T∏
t=1

1√
2π
(
σs
ζ

)2 e− 1
2

(
ζsbt
σs
ζ

)2

. (C.19)
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We then rely on a two-step procedure to obtain the MLE estimates (see, for instance,

Kutlu, 2010). In the first step, we gather the instrumental variables in the column vector

Z and obtain the parameters of the reduced-form equation from the first-order condition

(FOC):

1. ∇δsΛ (θ) = 0 = − 1(
σs
ζ

)2 B∑
b=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

) T∑
t=1

ZT
bt (lbt −Zbtδ

s)

⇔ δs =

(
B∑
b=1

T∑
t=1

ZT
btPrz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
Zbt

)−1

×
B∑
b=1

T∑
t=1

ZT
btPrz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
lbt;

2.
(
σ̂s
ζ

)2
=

∑B
b=1

∑T
t=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
(ζsbt)

2∑B
b=1

∑T
t=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

) ;

In the second step, we take the parameters obtained in the first step as given and

estimate the remaining parameters. We specify the linear first-order Markov process,

g(ϕbt−1 − fkl(kbt−1, lbt−1;β);α
s) = W bt−1α

s with W bt−1 = [1, ωbt−1]. The log-likelihood

is linear in the parameters αs and non-linear in the parameters β, leading to the following

optimization conditions:

3. ∇αsΛ (θ) = 0

= − 1(
σs
η

)2 − (σs
η,ζ)

2

(σs
ζ)

2

B∑
b=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)

×
T∑
t=1

∇αs

ηsbt −
σs
η,ζ(
σs
ζ

)2 ζsbt



T ηsbt −
σs
η,ζ(
σs
ζ

)2 ζsbt


⇔ αs =

 B∑
b=1

T∑
t=1

W T
bt−1Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)W bt−1 −
σs
W bt−1,ζ(
σs
ζ

)2 ζsbt




−1

×
B∑
b=1

T∑
t=1

W T
bt−1Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)ωbt −
σs
ω,ζ(
σs
ζ

)2 ζsbt

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4. ∇βΛ (θ) = 0 =

S∑
s=1

− 1(
σs
η

)2 − (σs
η,ζ)

2

(σs
ζ)

2

B∑
b=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)

×
T∑
t=1

(∇βη
s
bt)

T

ηsbt −
σs
η,ζ(
σs
ζ

)2 ζsbt


⇔ 0 =
S∑

s=1

B∑
b=1

T∑
t=1

1(
σs
η

)2 − σs
η,ζ

(σs
ζ)

2

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)

× (∇β(η
s
bt))

T

ηsbt −
σs
η,ζ(
σs
ζ

)2 ζsbt
 ,

where ∇β(η
s
bt) = −∇βf

kl (kbt, lbt;β) + αs
2∇βf

kl (kbt−1, lbt−1;β) +W bt−1∇βα
s
2.

5.
(
σ̂s
η

)2
=

∑B
b=1

∑T
t=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
(ηsbt)

2∑B
b=1

∑T
t=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

) ;

6. σ̂s
η,ζ =

∑B
b=1

∑T
t=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)
ηsbtζ

s
bt∑B

b=1

∑T
t=1 Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

) .

Notice that this two-step procedure is essentially a control function approach (Amsler

et al., 2016) that allows us to obtain all cluster-specific parameters based on a closed-

form solution despite the non-linearity of the overall optimization problem. Moreover,

the dimension of the non-linear optimization problem becomes independent of the num-

ber of clusters and significantly reduces the additional computational time needed when

increasing the number of clusters.

For comparison with the GMM estimation methodology specified above, we write down

unconditional moment conditions related to the second-stage log-likelihood estimation.

For a Cobb-Douglas production function with a linear Markov process for productivity,

the set of four second-stage moment conditions is:

E


S∑

s=1

Prz

(
zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ

)(
ηsbt −

σs
η,ζ(
σs
ζ

)2 ζsbt
)

∆βk
ηbt

∆βl
ηbt

1

ωbt−1


 = 0. (C.20)

C.3.3 Labor as a predetermined input

If labor is assumed to be predetermined, there are no endogeneity concerns in the second

stage of the estimation, and the observed likelihood can be specified as a univariate
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normal distribution:

psϕ(ϕbt|kbt, lbt, ϕbt−1, lbt−1, kbt−1;β,α
s, σs

η) =
T∏
t=1

1√
2π
(
σs
η

)2 e− 1
2

(
ηsbt
σs
η

)2

, (C.21)

which significantly simplifies the estimation procedure described above.

For comparison with the GMM estimation methodology specified above, we write down

unconditional moment conditions related to the second-stage log-likelihood estimation.

For a Cobb-Douglas production function with a linear Markov process for productivity,

the set of four second-stage moment conditions is:

E


S∑

s=1

Prz(zb = s| {kbt, lbt, ϕbt}Tt=0 ;Θ)ηbt


∆βk

ηbt

∆βl
ηbt

1

ωbt−1


 = 0. (C.22)

C.4 Comparison between estimation approaches

We compare in this section the impact on the estimated production function elasticities

implied by the different approaches discussed above. We do so by estimating a Cobb-

Douglas production function with a single-cluster linear Markov process for productivity

with different moment conditions imposed (See Table C.1). Specifically, we differentiate

between moment conditions imposed by GMM with predetermined labor (GMM Exo.)

and ML. Additionaly, we differentiate between moment conditions imposed by GMM

with non-predetermined labor (GMM Endo.), GMM where we use the control function

approach to control for the endogeneity problem (GMM control function approach), and

LIML. We expect to see differences in production function elasticities between the non-

parametric GMM Endo. approach and the GMM control function approach if the para-

metric constraints imposed by the control function approach are restrictive. Similarly, if

we observe differences between the GMM Exo. and ML, or the GMM control function

approach and LIML, these differences can be ascribed to the differences in instrument

specification for the moment conditions.

We apply our estimation procedure to Chilean data covering all manufacturing plants with

more than 10 employees between 1979 and 1996, used by Gandhi et al. (2020) and sourced

from Gandhi et al. (2020a). The results are displayed in Figures C.1 and C.2. We can

observe that the main jump in the output elasticities can be observed from the assumption

of whether labor is predetermined or not. Also, differences in instrument specification

for the moment conditions has an influence on the resulting output elasticities, as can

be deduced from comparing GMM exo. with ML, and GMM control function approach
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Table C.1: Overview of unconditional moment conditions

Approach Moment condition

GMM Exo. E

ηbt


kbt

lbt

1

ωbt−1


 = 0

ML E

ηbt

∂βk

ηbt

∂βl
ηbt

1

ωbt−1


 = 0

GMM Endo. E

ηbt


kbt

lbt−1

1

ωbt−1


 = 0

GMM control function approach E


(
ηbt − ση,ζ

(σζ)
2 ζbt

)
kbt

lbt

1

ωbt−1


 = 0

LIML E


(
ηbt − ση,ζ

(σζ)
2 ζbt

)
∂βk

ηbt

∂βl
ηbt

1

ωbt−1


 = 0

Note: The presented moment conditions represent the just-identified unconditional
moment conditions for a Cobb-Douglas production function with a sing-cluster linear
Markov process for productivity.

with LIML. On the other hand, differences in output elasticities between the GMM

Endo. approach and GMM control function approach are minimal, signaling that the

functional form restrictions to resolve the endogeneity issue are not very restrictive in

this setup.
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Figure C.1: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas production function
estimators with different moment conditions for the entire Manufacturing Sector and industries 311 and 321 of the Chilean economy.
Note: GMM Endo. and GMM Exo. refer to the Generalized Method of Moments estimation procedure with current labor and lagged labor as instruments, respectively. GMM control
function approach refers to the Generalized Method of Moments estimation procedure where we model the endogeneity in the error term by incorporating a reduced-form specification for
endogenous labor. ML and LIML refer to the Maximum Likelihood and Limited Information Maximum Likelihood estimation procedures, respectively.
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Figure C.2: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas production function
estimators with different moment conditions for the entire Manufacturing Sector and industries 322, 331, and 381 of the Chilean economy.
Note: GMM Endo. and GMM Exo. refer to the Generalized Method of Moments estimation procedure with current labor and lagged labor as instruments, respectively. GMM control
function approach refers to the Generalized Method of Moments estimation procedure where we model the endogeneity in the error term by incorporating a reduced-form specification for
endogenous labor. ML and LIML refer to the Maximum Likelihood and Limited Information Maximum Likelihood estimation procedures, respectively.
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Appendix D Monte Carlo

We rely on a Monte Carlo (MC) exercise to assess the performance of the proposed

estimator. We focus on the estimator’s ability to recover unobserved heterogeneity in the

productivity distribution while confirming the importance of controlling for unobserved

heterogeneity in production function estimations. The setup of the MC exercise closely

mimics Ackerberg et al. (2015) that builds on Syverson (2001); Van Biesebroeck (2007).

It deviates from Ackerberg et al. (2015) in the specification of the Markov process of

productivity which is assumed to differ between clusters of firms.

Production function and productivity shocks.— We simulate a panel dataset of

1,000 firms over 10 years assuming a Leontief production function:

Ybt = min
{
Kβk

bt L
βl

bte
ωbt , βmMbt

}
eεbt (D.1)

where βk = 0.4, βl = 0.6, and βm = 1, implying proportionality between output Ybt and

material inputMbt. εbt is measurement error that is normally distributed, εbt ∼ N (0, 0.1).

In contrast to Ackerberg et al. (2015), log-productivity ωbt follows a finite mixture AR(1)-

process

ωbt =
2∑

s=1

I [zb = s] [αs
0 + αs

1ωbt−1 + ηsbt] , (D.2)

with 800 observations assigned to cluster one (s = 1), Prz(zb = 1) = 0.8, and 200 obser-

vations to cluster two (s = 2), Prz(zb = 2) = 0.2. We assume that the cluster-specific

unexpected shocks to productivity follow a normal distribution, ηsbt ∼ N
(
0, (σs

η)
2
)
.

Choice of Labor and Material inputs.— We follow the first data generating process

(DGP) of (Ackerberg et al., 2015) for the labor (and material) inputs. Labor and materials

are assumed to be flexible inputs, though labor is predetermined. Lbt is chosen prior to

period t without full knowledge of ωbt. Strictly speaking, labor is chosen at time t−i, with

i = 0.5. We can think of decomposing the finite mixture AR(1)-process (D.2) into two

sub-processes. First, ωbt−1 evolves to ωb,t−i, at which point in time the firm chooses its

labor input (as a function of ωb,t−i). After Lbt is chosen, ωb,t−i evolves to ωbt. Additionally,

there are firm-specific (unobserved to the econometrician) wage shocks.
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The evolution of ω between sub-periods is specified as follows:

ωb,t−i =
2∑

s=1

I [zb = s]
[
αs
0 + (αs

1)
1−i ωb,t−1 + ηc,Abt

]
;

ωbt = I [zb = s]
2∑

c=1

[(
1− (αs

1)
i
)
αs
0 + (αs

1)
i ωb,t−i + ηc,Bbt

]
. (D.3)

Thus, when i > 0, firms have less than perfect information about ωbt when choosing Lbt,

and when i increases, this information decreases. Note that this specification is consistent

with the finite mixture AR(1)-process specified in (D.2) since (1− (αs
1)

i)αs
0+(αs

1)
iαs

0 = αs
0

and (αs
1)

1−i (αs
1)

i = αs
1. Additionally, we follow Ackerberg et al. (2015) in imposing

that V ar
(
(αs

1)
i ηs,Abt + ηs,Bbt

)
= V ar (ηsbt) and that the variance of ηs,Abt is such that the

variance of ωb,t−i is constant over time. This defines V ar
(
ηs,Abt

)
= σ2

ηs,A and V ar
(
ηs,Bbt

)
=

σ2
ηs,B .

Firms also face different wages where the log-wage process for firm i follows an AR(1)-

process:

ln (Wbt) = 0.3 ln (Wbt−1) + ηWbt , (D.4)

where the variance of the normally distributed innovation ηWbt

(
σ2
ηW

)
and the initial value

ln (Wb0) are set in such a way that the standard deviation of ln (Wbt) is constant over time

and equal to 0.1. Relative to a baseline in which all firms face the mean log wage in every

period, this wage variation increases the within-firm, across-time, standard deviation of

ln (Lbt) by about 10% (Ackerberg et al., 2015).

Given this DGP, firms optimally choose Lbt to maximize expected profits by setting (with

the difference between the price of output and the price of the material input normalized

to 1):

Lbt = β
1/(1−βl)
l W

−1/(1−βl)
bt K

βk/(1−βl)
bi e

(1/(1−βl))
(
(1−(αs

1)
i)αs

0+(αs
1)

i
ωbt−1+(1/2)σ2

ηs,B

)
,

for which we rely on the analytical result for the first moment of a log-normally distributed

variable, Et−i [e
ωbt ] = e(1−(αs

1)
i)αs

0+(αs
1)

i
ωb,t−i+

1
2
(ηs,Bbt )2 .

Investment choice and steady state.— In contrast to the flexible labor and material

inputs, capital is assumed to be dynamic and accumulated through investment according

to Kbt = (1 − δ)Kbt−1 + Ibt−1, where (1 − δ) = 0.8. Investment is subject to convex

adjustment costs given by cb (Ibt) =
ϕb

2
I2bt, where 1/ϕb is distributed lognormally across

firms (but constant over time) with a standard deviation of 0.6.

Assuming constant returns to scale, a pared-down version of the above can be solved
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analytically using Euler equation techniques. The Euler equation approach implies the

following optimal investment rule (where β is the discount factor, set to 0.95 in the

MC):

Ibt =
β

ϕb

∞∑
τ=0

(β(1− δ))τ
(

βk

1− βl

)
×
[
β
βl/(1−βl)
l − β

1/(1−βl)
l

]
× exp

{[(
1

1− βl

)
αc
0 +

(
1

1− βl

)
(αc

1)
τ+1ωbt +

−βl

1− βl

ρτ+1
W ln (Wbt)

+
1

2

(
−βl

1− βl

)2

σ2
ηW

τ∑
s=0

ρ
2(τ−s)
W

+
1

2

(
1

1− βl

)2

(αc
1)

2b
(
(αc

1)
2τσ2

ηc,A +
τ∑

s=1

ρ2(τ−s)σ2
η

)
+

(
1

1− βl

)(
1

2
σ2
ηc,B

)]}
(D.5)

To avoid dependence on the initial conditions, the data is simulated over one hundred

periods of which only the last ten periods are retained.
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Appendix E Robustness

E.1 Estimation methodology and cluster selection

The main text reports the estimation results for a value-added Translog production func-

tion of NACE Rev.2 industry 22. We demonstrate that the reported results are ro-

bust to other estimation methodologies and manufacturing industries. We present the

goodness-of-fit indicators (Figure E.1) and output elasticities and RTS (Online Appendix

Figures E.2 and E.3), for alternative estimation methodologies and all five industries in

the data.

The proposed method delivers reasonable estimates in all cases. Moreover, the stability

of the output elasticities does not appear to rely on the estimation methodology or any

selected industry. The Cobb-Douglas specifications are more volatile than the Translog

specifications, but this seems to originate from the model misspecification or local maxima

rather than from the underlying heterogeneity in the data. Only the value-added Translog

specifications for the entire manufacturing sector and industry 28 demonstrate some signs

of an omitted variable bias. However, the estimation results of the respective gross-output

Translog specifications do not confirm this observation.

Moreover, the stability of the proposed estimator to the addition of supplementary firm-

level characteristics is also robust across industries. In Table E.1 we present the log-

likelihood, BIC, and ICLbic for different specifications of the cluster affiliation probabil-

ities for all industries. We observe that, regardless of the industry, the base specification is

preferred over a specification with additional firm-level characteristics and that these ad-

ditional firm-level characteristics are insufficient to account for the uncovered unobserved

heterogeneity in productivity.
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Figure E.1: Change in goodness-of-fit indicators of Ackerberg et al. (2015) and Gandhi
et al. (2020) Cobb-Douglas and Translog production function estimators with endogen-
ous labor in function of the number of clusters for the entire manufacturing sector and
industries 18, 22, 25, 28, and 31 of the Belgian economy.
Note: NLL stands for negative log-likelihood, BIC for the Bayesian information criterion, and ICLbic for the integrated
complete-data likelihood Bayesian information criterion. The times symbol indicates the optimal number of clusters defined
by the minimum of the respective goodness-of-fit indicator. “No convergence” indicates non-convergence of the maximum
likelihood estimation algorithm.

A–20



Capital

GMM 1 2 3 4 5 6 7 8 9 10

0.00

0.04

0.08

LIML with ... no. components

Labour

GMM 1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

LIML with ... no. components

Materials

GMM 1 2 3 4 5 6 7 8 9 10

0.59

0.60

0.61

0.62

LIML with ... no. components

RTS

GMM 1 2 3 4 5 6 7 8 9 10

0.9

1.0

1.1

LIML with ... no. components

Manufacturing sector

Capital

GMM 1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

LIML with ... no. components

Labour

GMM 1 2 3 4 5 6 7 8 9 10

0.3

0.5

0.7

LIML with ... no. components

Materials

GMM 1 2 3 4 5 6 7 8 9 10

0.54

0.55

0.56

LIML with ... no. components

RTS

GMM 1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1.0

1.1

LIML with ... no. components

Industry 18

Capital

GMM 1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

LIML with ... no. components

Labour

GMM 1 2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

LIML with ... no. components

Materials

GMM 1 2 3 4 5 6 7 8 9 10

0.660

0.665

0.670

0.675

0.680

LIML with ... no. components

RTS

GMM 1 2 3 4 5 6 7 8 9 10

1.00

1.05

LIML with ... no. components

ACF CD ACF Translog GNR CD GNR Translog Convergence Optimal no. clusters

Industry 22

Figure E.2: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas and Translog production
function estimators with endogenous labor, in function of the number of clusters for the entire manufacturing sector and industries 18
and 22 of the Belgian economy.
Note: GMM and LIML refer to the generalized method of moments and limited information maximum likelihood as estimation procedures. The times symbol indicates the optimal number
of clusters defined by the integrated complete-data likelihood Bayesian information criterion. “No convergence” indicates non-convergence of the maximum likelihood estimation algorithm.
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Figure E.3: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas and Translog production
function estimators with endogenous labor, in function of the number of clusters for industries 25, 28, and 31 of the Belgian economy.
Note: GMM and LIML refer to the generalized method of moments and limited information maximum likelihood as estimation procedure. The times symbol indicates the optimal number
of clusters defined by the integrated complete-data likelihood Bayesian information criterion. “No convergence” indicates non-convergence of the maximum likelihood estimation algorithm.
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Table E.1: Goodness-of-fit indicators for estimation with varying concomitant specifica-
tions

Specification Log-likelihood BIC ICLbic

Industry 18

Base specification 21,053.99 -40,602.13 -40,115.06

Additional concomitants 21,101.29 -40,383.38 -39,922.39

Without initial capital and labor 20,462.87 -39,654.90 -38,904.40

Industry 22

Base specification 9,504.57 -18,150.39 -17,956.60

Additional concomitants 9,515.91 -18,009.49 -17,819.55

Without initial capital and labor 9,291.26 -17,846.43 -17,591.01

Industry 25

Base specification 41,903.67 -82,116.84 -80,355.24

Additional concomitants 41,991.85 -81,941.42 -80,126.77

Without initial capital and labor 40,850.58 -80,274.49 -77,877.64

Industry 28

Base specification 8,187.08 -14,916.58 -14,536.71

Additional concomitants 8,223.96 -14,687.03 -14,336.19

Without initial capital and labor 7,797.44 -14,364.79 -13,656.31

Industry 31

Base specification 9,592.36 -18,729.29 -18,516.11

Additional concomitants 9,601.39 -18,679.87 -18,473.56

Without initial capital and labor 9,464.77 -18,524.71 -18,287.81

Notes: a. The base specification refers to eq. (11), the augmented specifica-
tion refers to eq. (21), and the specification without initial capital and labor
refers to eq. (21) without initial capital and labor.
b. BIC stands for the Bayesian information criterion and ICLbic for the in-
tegrated complete-data likelihood Bayesian information criterion.
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E.2 Chilean manufacturing sector

To evaluate the generalizability of the proposed productivity estimation methodology and

the robustness of the reported results for the Belgian manufacturing sector, we apply our

estimation procedure to Chilean data covering all manufacturing plants with more than 10

employees between 1979 and 1996, used by Gandhi et al. (2020) and sourced from Gandhi

et al. (2020a). We follow Gandhi et al. (2020) in estimating the production function

assuming labor is predetermined and, therefore, exogenous. In line with the main results,

the goodness of fit statistics displayed in Figure E.4 provide evidence of heterogeneity in

productivity. The fact that we find less heterogeneity in terms of the optimal number

of clusters relative to the Belgian data can be ascribed to the data coverage. Whereas

the Chilean data covers firms with more than 10 employees, the Belgian data covers all

firms with more than one FTE employee. The production function estimates presented in

Figures E.5 and E.6 are close to those obtained with current state-of-the-art estimation

methodologies.

Next, we test the assumption that the initial conditions contain sufficient information to

identify cluster affiliation for the Chilean case. If this assumption fails to hold, augmenting

the base specification with additional, economically relevant firm-level characteristics is

necessary to help improve the identification of cluster affiliation. To test this hypothesis,

we augment equation (11) to the following multinomial logistic specification:

ln
Prz(zb = s|kb0, lb0, ωb0, eb;γ

s)

Prz(zb = 1|kb0, lb0, ωb0, eb;γ1)
= γs

0 + γs
1kb0 + γs

2lb0 + γs
3ωb0

+ γs
4EXPb + γs

5IMPb + γs
6Hiwagb + γs

7Advb, ∀s = 2, . . . , S

(E.1)

where cluster probabilities are specified conditional on initial capital, labor, and pro-

ductivity as well as additional firm characteristics represented in the vector eb = {EXP b,

IMP b, Hiwagb, Advb}, such as indicators of export (EXP b) and import activity (IMP b),

of firms paying a higher wage than the industry median (hiwagb), and of firms reporting

advertisement expenditures (Advb) over the sample period.2 Furthermore, we specify a

version of equation (E.1) without initial capital, labor, and productivity. If the considered

firm-level characteristics contain sufficient information to group firms into clusters, we

expect this specification to perform as well as our base specification.

We rely on the two augmented specifications discussed above to re-estimate the produc-

tion function. The resulting log-likelihood, BIC, and ICLbic are reported in Table E.2.

In line with the main results we find that, with the exception of industry 311, the in-

crease in log-likelihood obtained by the augmented specification is insufficient to warrant

2We set the firm-level indicators equal to zero when they report no activity in this area over the entire
sample period or report activity at least one point in time during the sample period. Firms reporting
no activity for all indicators are chosen as the reference group.
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the increase in the number of parameters, as indicated by the smaller BIC and ICLbic

indicators in absolute value relative to the base specification. Additionally, we reaffirm

the importance of the initial conditions in identifying cluster affiliation. Comparing the

model fit for the augmented specification without initial conditions to the base specific-

ation, the ICLbic and BIC indicate that the latter performs best. Therefore, even when

firm-level information regarding the internationalization status of a firm, its advertising

expenditure, and the relative height of its wages is available, a significant share of the

heterogeneity in productivity remains latent and cannot be accounted for using existing

methods in the literature.

Lastly, we calculate the decomposition of aggregate productivity for different Chilean

productivity indices obtained from different estimation methodologies and different spe-

cifications of heterogeneity in productivity.3 Specifically, we estimate productivity us-

ing the GMM and ML identification strategies with (i) a base specification: ωbt =

α0 + α1ωbt−1 + ηbt, (ii) a deterministic control for exporter status, ωbt = α0 + α1ωbt−1 +

α2EXPb+α3ωbt−1EXPb+ηbt, and (iii) a more exhaustive set of controls for heterogeneity

in productivity:

ωbt = α0 + α1ωbt−1 + α4EXPb + α5ωbt−1EXPb

+ α6IMPb + α7ωbt−1IMPb

+ α8Hiwagb + α9ωbt−1Hiwagb

+ α10Advb + α11ωbt−1Advb + ηbt.

(E.2)

Similarly, we obtain productivity from the finite mixture ML identification strategy with

the optimal number of four clusters and (i) the base specification for cluster affiliation

(11), (ii) the base specification for cluster affiliation augmented with a deterministic

control for internationalization status using a dummy indicator, and (iii) an exhaustive

control for heterogeneity in the specification for cluster affiliation (E.1).

Figure E.7 displays the evolution of the obtained aggregate productivities and their de-

composition across estimation methodologies and specifications for Industry 311 with

the optimal number of four clusters in Chile. In line with the main results, we observe

that the evolution of aggregate productivity over time is very similar across estimation

methodologies and specifications. Moreover, the dependence of the export premium on

the specification for the GMM and ML estimation methodology is more pronounced in

Chile than in Belgium. For instance, the export premium for Industry 311 —the dif-

ference between the average productivity of exporters (dashed line) and non-exporters

(continuous line) in the second column of Figure E.7— evolves from 12.18%, for the base

3For each estimation methodology and specification, we normalize aggregate productivity relative to
share-weighted aggregate productivity in the initial year (Ω0) (Aw et al., 2001).
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specification, to 22.46% for the deterministic and 49.57% for the exhaustive specification

of heterogeneity for the GMM methodology (see Table E.3). In comparison, the export

premium is approximately 76% for all three specifications of the finite mixture ML.
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Figure E.4: Change of goodness-of-fit indicators of Ackerberg et al. (2015) and Gandhi
et al. (2020) Cobb-Douglas and Translog production function estimators with exogenous
labor, in function of the number of clusters for the entire manufacturing sector and
industries 311, 321, 322, 331, and 381 of the Chilean economy.
Note: NLL stands for negative log-likelihood, BIC for the Bayesian information criterion, and ICLbic for the integrated
complete-data likelihood Bayesian information criterion. The times symbol indicates the optimal number of clusters defined
by the minimum of the respective goodness-of-fit indicator.A–27
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Figure E.5: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas and Translog production
function estimators with exogenous labor, in function of the number of clusters for the entire manufacturing sector and industries 311,
321 of the Chilean economy.
Note: GMM and ML refer to the generalized method of moments and maximum likelihood estimation procedures. The times symbol indicates the optimal number of clusters defined by
the integrated complete-data likelihood Bayesian information criterion.
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Figure E.6: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas and Translog production
function estimators with exogenous labor, in function of the number of clusters for industries 322, 331, and 381 of the Chilean economy.
Note: GMM and ML refer to the generalized method of moments and maximum likelihood estimation procedures. The times symbol indicates the optimal number of clusters as defined by
the integrated complete-data likelihood Bayesian information criterion.
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Table E.2: Goodness-of-fit indicators for estimation with varying concomitant specifica-
tions.

Specification Log-likelihood BIC ICLbic

Industry 311

Base specification 7,155.82 -14,031.99 -13,121.45

Additional concomitants 7,260.46 -14,125.55 -13,293.26

Without initial capital and labor 7,134.40 -13,767.35 -12,277.98

Industry 321

Base specification 2,597.86 -5,069.94 -4,921.05

Additional concomitants 2,600.65 -5,041.97 -4,887.88

Without initial capital and labor 2,638.43 -5,042.05 -4,891.89

Industry 322

Base specification 2,113.01 -4,103.07 -3,909.68

Additional concomitants 2,115.32 -4,074.91 -3,878.02

Without initial capital and labor 2,129.69 -4,029.88 -3,828.29

Industry 331

Base specification 636.73 -1,150.08 -900.91

Additional concomitants 639.29 -1,122.31 -878.73

Without initial capital and labor 657.56 -1,084.82 -878.97

Industry 381

Base specification 1,537.71 -2,949.10 -2,647.88

Additional concomitants 1,539.18 -2,918.37 -2,619.81

Without initial capital and labor 1,539.57 -2,843.34 -2,527.09

Notes: The base specification refers to equation (11), the augmented specification
refers to equation (E.1), and the specification without initial capital and labor refers to
equation (E.1) without initial capital and labor. BIC stands for Bayesian Information
Criterion and ICLbic for Integrated Complete-data Likelihood Bayesian Information
Criterion. Estimates are obtained from a Value-added Translog production function
with exogenous labor.
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Figure E.7: Evolution of aggregate productivity and its decomposition for exporting- and
non-exporting firms for Industry 311 in Chile.
Notes: GMM, ML, and 4-cluster finite mixture ML refer to the productivity estimation methodologies, while Base,

Deterministic, and Exhaustive refer to the specification of heterogeneity within these methodologies, i.e., see equations

(E.2) and (E.1).

Table E.3: Average Export Premia across productivity estimation methodologies and
specifications

Methodology Specification Industry 311 Industry 321 Industry 322 Industry 331 Industry 381

GMM Base 0.1218 0.0588 0.1542 0.0341 0.0309

(0.0097) (0.0070) (0.0091) (0.0115) (0.0054)

GMM Deterministic 0.2246 0.0866 0.1727 0.0701 0.0372

(0.0091) (0.0073) (0.0090) (0.0119) (0.0054)

GMM Exhaustive 0.4957 0.1067 0.1982 0.1018 0.0671

(0.0085) (0.0076) (0.0088) (0.0123) (0.0053)

ML Base 0.6664 0.1451 0.2421 0.0840 0.1008

(0.0095) (0.0074) (0.0098) (0.0118) (0.0046)

ML Deterministic 0.7552 0.1743 0.2506 0.1273 0.1144

(0.0092) (0.0078) (0.0097) (0.0122) (0.0045)

ML Exhaustive 0.7484 0.1845 0.2605 0.1553 0.1434

(0.0090) (0.0079) (0.0097) (0.0125) (0.0043)

Finite Mixture ML Base 0.7630 0.1733 0.2506 0.1382 0.1184

(0.0095) (0.0078) (0.0102) (0.0124) (0.0045)

Finite Mixture ML Deterministic 0.7654 0.1734 0.2505 0.1383 0.1184

(0.0095) (0.0078) (0.0102) (0.0124) (0.0045)

Finite Mixture ML Exhaustive 0.7675 0.1728 0.2506 0.1369 0.1180

(0.0095) (0.0078) (0.0102) (0.0124) (0.0046)

Notes: Export premia obtained from a log-linear regression with year dummies t, ωbt = αExpb + t + ϵbt, where
productivity is obtained from a GMM, ML and Finite Mixture ML estimation methodology with a Base, Determ-
inistic, or Exhaustive specification of heterogeneity within these methodologies, i.e. see (E.2) and (E.1). Standard
Errors between brackets obtained from the OLS regression.
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Appendix F Robustness of Production Function Coef-

ficients

The robustness of the production function coefficients to relaxing the homogeneity as-

sumption of the productivity growth process is not in line with existing findings in the

literature (see De Loecker (2013) and the introduction). In the robustness section of the

main paper, we establish that this result is not specific to Belgian firm-level data. Here,

we assess the strength of this result with regard to two methodological choices made in

this paper.

First, the identification strategy in this paper relies on random cluster affiliation, in con-

trast to the deterministic cluster affiliation currently used in the literature. Despite having

demonstrated the adequacy of the random cluster affiliation identification strategy in the

Monte Carlo exercise (see Section 3.4), we additionally evaluate the robustness of produc-

tion function coefficients in our Belgian firm-level data using deterministic cluster iden-

tification strategies. To this end, we estimate separate production functions for 5 NACE

Rev.2 industries, which are: Printing and reproduction of recorded media (18); Manu-

facture of rubber and plastic products (22); Manufacture of fabricated metal products,

except machinery and equipment (25); Manufacture of machinery and equipment n.e.c.

(28); and Manufacture of furniture (31), and an aggregate production function for the

entire manufacturing sector. We parameterize the production function f(·;β) assum-

ing both a gross-output (Gandhi et al., 2020) and value-added (Ackerberg et al., 2015)

production function under both a Cobb-Douglas and Translog specification. These pro-

duction functions are estimated using a GMM estimation approach with either a simple

linear Markov process specification:

ωbt = α0 + α1ωbt−1 + ηbt, (F.1)

or a deterministic Markov specification:

ωbt = α0 + α1ωbt−1 + α2Db + α3 (ωbt−1 ×Db) + ηbt, (F.2)

where Dbt is a dummy allowing for heterogeneity in the Markov process depending on

whether the firm b is respectively an exporter, importer, or engaged in FDI.

The results of this exercise, presented in Figures F.1 and F.2, confirm the evidence of ro-

bust production function coefficients in our dataset. We observe no significant deviations

between the output elasticities obtained from a linear Markov process (None) and those

obtained from a Markov process allowing for heterogeneity depending on whether the

firm is respectively an exporter, importer, engaged in FDI, or all three simultaneously
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(Export, Import, FDI, All).

Second, this paper relies on the commonly used scalar unobservability assumption, stating

that materials are a flexible factor input that is decided upon simultaneously at time t

without affecting future profits (mbt = h(ωbt, kbt, lbt)). Under the scalar unobservability

assumption, the change in future productivity (and cluster affiliation) does not affect

the choice of material inputs (Ackerberg, 2021). It could be, however, that a firm’s

cluster affiliation affects its input demand. For instance, a firm’s export status has been

argued to lead to differences in optimal input demand across firms (De Loecker and

Warzynski, 2012). Suppose this export status is a determinant of cluster affiliation. In

that case, the cluster affiliation might then also affect optimal input demand, such that

mbt = h(ωbt, kbt, lbt, z
s
b). This would be in line with Kasahara et al. (2023) assuming

the material input demand depends on cluster affiliation. Shenoy (2020) provides a

formal framework to evaluate the adequacy of the scalar unobservability assumption. The

author demonstrates that failing to account for relevant variables affecting input demand

is equivalent to introducing a non-classical measurement error in the first stage of the

production function estimation procedure. If this is the case, our first-stage estimation

procedure might be misspecified, with unobserved heterogeneity largely being captured

by the first-stage residual εbt. This could explain the robustness of our second-stage

production function estimation results to the homogeneity assumption of productivity

growth. However, it is unclear why one would argue that the FOC for the perfectly flexible

input may be cluster-dependent while FOCs of the non-flexible inputs are not. Cluster-

dependent FOCs for all inputs imply a cluster-specific production function specification,

which falls outside the scope of this paper. In the concluding Section 6, we discuss

the possibilities that the methodology proposed in this paper opens for future research,

including cluster-dependent production function specifications.
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Figure F.1: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas and Translog production
function estimators with endogenous labor, in function of the Markov specification for the complete Industry and industries 18 and 22 of
the Belgian economy.
Note: None, Export, Import, and FDI refer to a deterministic Markov specification allowing for no heterogeneity or heterogeneity in the Markov process, respectively depending on whether
the firm is an exporter, importer, engaged in FDI, or all these three simultaneously.
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Figure F.2: Change in output elasticities, based on Ackerberg et al. (2015) and Gandhi et al. (2020) Cobb-Douglas and Translog production
function estimators with endogenous labor, in function of the Markov specification for the industries 25 and 28, and 31 of the Belgian
economy.
Note: None, Export, Import, and FDI refer to a deterministic Markov specification allowing for no heterogeneity or heterogeneity in the Markov process, respectively depending on whether
the firm is an exporter, importer, engaged in FDI, or all these three simultaneously.
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